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ABSTRACT

Man overboard incidents in a maritime vessel are serious accidents
where, the efficient and rapid detection is crucial in the recovery of
the victim. The severity of such accidents, urge the use of intelligent
systems that are able to automatically detect a fall and provide
relevant alerts. To this end the use of novel deep learning and
computer vision algorithms have been tested and proved efficient
in problems with similar structure. This paper presents the use of a
deep learning framework for automatic detection of man overboard
incidents. We investigate the use of simple RGB video streams for
extracting specific properties of the scene, such as movement and
saliency, and use convolutional spatiotemporal autoencoders to
model the normal conditions and identify anomalies. Moreover, in
this work we present a dataset that was created to train and test
the efficacy of our approach.
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1 INTRODUCTION

A man overboard is an emergency incident, where a crew member or
passenger of a maritime vessel has fallen off-vessel in the sea. These
types of accidents are more often in passenger ships, where there is
presence of a large number of untrained individuals. It is estimated
that 22 people fall off a cruise ship annually [1]. Moreover, these
incidents have high mortality rates, as almost 79% of the victims do
not survive or are considered missing [1]. The cause of such high
mortality rates is the low speed of detection and retrieval. After an
hour in water at 4.4{’}C, body temperature drops to 30{"}C [2]. Thus,
it is a critical event that demands immediate handling as time plays
an important role and because the overboard casualty is exposed
to various security risks, such as drowning at sea, hypothermia,
injuries and rough sea. It is noted that the problem lies in the lack of
timely and critical information, such as the accurate confirmation
of the event as well as its exact time and position of the occurrence.

2 PREVIOUS WORK

In a universal maritime surveillance system, human detection is a
key issue and must be completely independent of the environment
as well as light and weather conditions [3]. Several human detection
methods have been presented in the literate and have emphasized
the importance of real-time home surveillance systems (e.g. [4], [5])
that focus on fall detection through visual sensors, deep learning
and computer vision applications (e.g. [6] - [8]), however, little work
has been presented in the literature on the man overboard situation.

In essence, though the incident can be modeled as an abnormal
behavior detection problem, where the normal situation consists
of a normal capturing of a seafaring vessel, while the abnormality
would be the capturing of a fall. To this end, the main approaches
for abnormal event recognition involve either the use of super-
vised deep learning techniques to learn a dictionary of abnormal
sub-events or unsupervised outlier detection techniques [9] - [11].
Examples include surveillance in industrial environments [9] or
critical infrastructures [11] for safety/security and quality assur-
ance, traffic flow management [12], and intelligent monitoring of
public places [13]

Regarding outlier detection, the works of [14] - [16] learn from
a dictionary of sub-events, through a training process, and then
those events that do not lie in the partitioned sub-space are marked
as abnormal ones.

Regarding deep learning, the work of [17] employs convolutional
auto-encoders (ConvAE) to learn temporal regularity in videos,
while auto-encoders are exploited in [18] to learn features and
reconstruct the input images. Then, one-class Support Vector Ma-
chines (SVMs) are used for detecting abnormal events. The work
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Figure 1: Overall system architecture.

of [19] introduces a hybrid scheme that aggregates ConvAE with
Long Short-Term Memory (LSTM) encoder-decoder.

Recently, deep generative models have been applied [17] - [19].
These models are trained to produce normal events while the ab-
normal ones are given as the difference between the original frames
and the generated ones.

In parallel, unsupervised learning models are utilized for abnor-
mal event detection. In [20], the anomalies in videos are scored
independently of temporal ordering and without any training by
simply discriminating between abnormal frames and normal ones.
Other approaches exploit on-line incremental coding [21], deep
cascading neural networks, and unmasking (a technique previously
used for authorship verification in text documents) [22]. Recently,
the works of [23] and [24] incorporate autoencoders and supervised
learning for abnormal event detection. Other approaches employ
tracking algorithms to extract salient motion information which is
then classified either as normal or abnormal [25], [26]. However,
tracking fails in complex visual scenes where multiple humans are
present.

In this paper, we present the use of an unsupervised fall detection
method for man overboard scenarios (see Figure 1). Our approach
is based on the use of convolutional spatiotemporal autoencoders
trained using a dataset that simulates man overboard incidents. We
use multiple image properties as a way to enhance the detection
capabilities of our system.

3 SYSTEM ARCHITECTURE

The presented system uses only RGB video streams to identify
overboard falls. However, the simple use of raw RGB frames is not
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sufficient for an efficient detection. To extract additional data from
the visual modality we furtherly analyzed the camera streams to
extract specific visual properties, i.e. representative vectors. To this
end, the visual modality is analyzed furtherly to extract the actual
frame (appearance), the gradient of the frame using a short memory
window of 10 frames (movement vector), the objectness of the
current frame (saliency vector). The Appearance Property consists
of the actual frame capturing. The Motion Property captures the
movement of objects by taking as input the gradient of the frame.
Finally, the Saliency Property reflects how likely a window of the
frame covers an object of any category. This property creates a
saliency map with the same size as the frame that covers all objects
in an image in a category-independent manner.

Each image property was fed into an individual spatiotempo-
ral autoencoder. Autoencoders are a type of Neural Network that
manages to learn efficient data encodings by training the network
to ignore signal noise. Their usefulness comes from the fact that
they are trained in an unsupervised manner. They are essentially
composed of two main components that are trained in parallel. The
dimensionality reduction component aims at extracting an efficient
encoding of the input signal, while the reconstruction side tries
to generate from the reduced encoding a representation as close
as possible to the original input. To identify the abnormalities, the
reconstruction error of each autoencoder was monitored, and when
the error was bigger than a predefined threshold, an alert was raised.
The selection of the threshold took place during the training, to
identify the exact value that maximized detection performance.

The autoencoders used for each image property had the structure
presented in Figure 2. Each RGB frame for the appearance vector
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Figure 2: Autoencoder structure.

was reduced to a grayscale image with a resolution of 227x227x1.

A 10 frame batch was used for the analysis.

4 PERFORMANCE EVALUATION
4.1 Dataset Description

In order to train and evaluate the proposed methodology, a mock
man-overboard event was conducted that concerned the fall of a
human-sized dummy from the balcony of a high-rise building. In
particular, the human dummy, weighting 30 Kg, was thrown from
an approximate height of 20 meters, which is roughly equivalent
to two seconds of free-falling. For the needs of the experiment, we
made 320 test throws of the dummy, to simulate a man-overboard
event (see Figure 3(a)-(d)). Additionally, we recorded several videos
without dropping the dummy as well as numerous throws of various
objects, such as plastic bags and bottles (see Figure 3(e)). This way
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we can implement deep learning models that are not prone to false-
positive alarms, triggered by non-human-related events.

The experiments took place in the surrounding area of Nikaia
Olympic Weightlifting Hall, and lasted five days. Due to the fact
that the test throws were carried out throughout the whole day,
from 9:00 AM to 5:00 PM, the acquired videos vary in terms of
illumination conditions (e.g. underexposure, overexposure). Ad-
ditionally, we shot under various weather conditions (e.g. sunny,
cloudy, rainy, windy, hot, cold), thus providing further variations
in the background of the event.

In this paper, we are using a dataset consisted of RGB videos
featuring the free falls of the dummy (see Figure 3(a)-(d)). For the
dataset collection, which contains video sequences with a resolution
of 1080x1920 pixels, we used a GoPro Hero 7 Silver. The camera
was set to shoot at a high frame rate, at 50 frames per second, to
ensure sufficient acquisition of data that concerns the critical event.

It is underlined that to avoid training bias and guarantee replica-
bility of the results to other datasets, we placed the sensor in four
different locations of the building, in order to obtain data that vary
in terms of background, illumination, shooting angle, and distance
(see Figure 3(a)-(d)). In particular, as depicted in Figure 4, we placed
the RGB camera (i) on the left of the fall at a close distance of 7m
(see Figure 3(a)), (ii) on the right of the fall at a close distance of
5m (see Figure 3(b)), (iii) on the top left of the fall at an angle of
roughly 45{°} (see Figure 3(c)), and (iv) to the left of the fall at a long
distance of 13m (see Figure 3(d)). It is emphasized that to further
generalize the learning procedure, we augmented the training data
by horizontally flipping the corresponding videos.

4.2 Overview of the implementation

The proposed method was implemented in Python. The autoen-
coders that perform the feature extraction (Appearance, Gradient,
and Saliency) were implemented in Tensorflow and Keras. The
hyperparameter optimization of the learning algorithms was deter-
mined using the Hyperband optimization method of [27], which
employs a principled early-stopping strategy to allocate resources,
allowing it to evaluate orders-of-magnitude more configurations
than black-box procedures like Bayesian optimization methods [28].
The implementation used Python 3.6, Keras (1.08), and Tensorflow
(2.1.0) machine learning libraries, in combination with a number
of other scientific and data management libraries. The model was
trained using an Intel Core i7-6700K CPU (4GHz) with 2 NVIDIA
GTX1080 GPUs.

4.3 Experimental Validation

The Area Under Curve (AUC) metric was employed in assessing
the performance of the proposed method and the compared ones.
The AUC is computed with regard to ground-truth annotations
at the frame-level and it is a common metric for many abnormal
event detection methods. It measures the ability of the learning
algorithm to correctly distinguish normal from abnormal events
and summarises the ROC curve of the system, i.e. the probability
curve that plots the raising a true alert (true positive rate) and a
false alarm (false positive rate) at various thresholds. Our algorithm
achieves an AUC score of 97.3. Due to the fact that there are no
similar publications for fall detection in man overboard scenarios,
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Figure 3: Test throws during the data collection experiments. The free fall (a)-(d) of the human dummy from different shooting
angles (positive event), and (e) of a plastic bag (negative event).

Figure 4: The four locations of the building that the optical sensor was placed, during the data acquisition experiments.

at least to the authors’ knowledge, a comparative analysis of the
performance is hard to achieve. However, if we considered each
frame including a part of a fall as abnormal and all other frames
as normal, we can assess the performance of the system using the

classification metrics of accuracy, precision, recall and F1-score.
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The performance of our system using these metrics can be viewed
in Figure 5
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Figure 5: Performance assessment of the proposed learning algorithm.

5 CONCLUSIONS

In this paper, we presented and evaluated a learning algorithm for
man overboard detection. The employed techniques use a deep
machine learning framework, modeling a man overboard incident
as an abnormal action recognition one. The system utilizes multi-
property analysis of video streams to extract salient features and
encodings of the normal scene using a set of convolutional spa-
tiotemporal autoencoders. We then proceed in identifying falls by
the autoencoders’ success or failure to reconstruct a scene due to
the presence of abnormal events.

Future work should include the presence of additional imaging
modules, such as thermal imaging frames, and the studying of
additional ways for inter and intra property encoding of all the
available modalities to maximize the detection capabilities.
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