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ABSTRACT 
A man overboard is an emergency incident, in which fast 
detection is the most crucial factor, for the quickest and most 
efficient recovery of the victim. As such, efficient monitoring 
methodologies should be employed. A variety of sensors is 
available today, supporting a continuous monitoring process, 
regardless of environmental conditions; RGB and thermal are 
two commonly used sensors. At the same time, several 
algorithms and techniques have been tested and proved to be 
efficient in human detection and situation recognition tasks. 
However, to this day a coherent methodology for fall detection 
over multiple sensors on a large-scale deployment, complying 
with related ISO standards on extremely low false positive alerts, 
has not been implemented. In this paper, we investigate the 
possibilities as well as the limitations of man overboard vision-
based systems’ development based on RGB and thermal imagery.  
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1 Introduction 
A man overboard is an emergency situation where a member 

of the ship's crew or a passenger has fallen off the ship, in the 
sea. Each year, approximately 22 people fall off a cruise ship and 
79% of them do not survive or are considered missing [1]. The 
fact that when an individual remains for 1 hour in water at 4.4°C 
and their body temperature drops at 30°C, is the main reason for 
such a small survival rate [2]. Thus, it is a critical event that 
demands immediate handling as time plays an important role 
and because the overboard casualty is exposed to various 
security risks, such as drowning at sea, hypothermia, injuries 
and rough sea. It is noted that the problem lies in the lack of 
timely and critical information, such as the accurate 
confirmation of the event as well as its exact time and position of 
the occurrence. 

Traditionally, maritime surveillance systems consist of optical 
cameras, which are programmed to monitor statically 
predetermined positions of the security perimeter. However, 
since emergency response and rescue time play a crucial role in 
such incidents, a wide area multi-sensor approach (e.g. [3]) is 
more suitable, that is able to perform accurately under adverse 
conditions, such as extreme weather events (e.g. thunderstorms, 
dust storms, blizzards, tornadoes, rough sea) and various 
illumination situations (e.g. overexposure, underexposure, low 
light, foggy and cloudy environments). Moreover, it is noted that 
following the alarm, wide-area sensors are capable of scanning 
large areas at a 360° angle and therefore, are able to provide 
continuous monitoring of the man overboard event, enhancing 
the effectiveness and reducing the response time of the rescue 
team. 

Over the last decades, interest, research and development of 
computer vision systems have grown rapidly. Optical cameras 
(e.g. cellphones, UAVs, DSLR and CCTV cameras), which capture 
visible light in grayscale or RGB images, are the most common 
visual sensors. However, these sensors conceal some serious 
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disadvantages due to the fact that the object's visibility is 
inextricably linked to the light source (e.g. sun, artificial light 
sources) [4]. Hence, the main challenge that arises is to 
overcome illumination problems of RGB and grayscale cameras 
(e.g. overexposure, underexposure, color balance, total darkness, 
near-instantaneous switching of light intensity and direction). 

Many of the aforementioned limitations can be addressed 
through the use of thermal cameras since human is a warm-
blooded organism, a property that distinguishes him from the 
environment around him in thermal images. Thus, their use is an 
important aspect of computer vision systems related to human 
detection [5] and furthermore, if the observation is made at a 
close distance, we are able to extract information related to skin 
temperature distribution, which may be critical in processes such 
as face recognition [6], [7]. 

Although thermal sensors hide some significant advantages 
over visual cameras that are related to illumination conditions 
during the critical incident, it is underlined that there are cases 
where the optical cameras are superior and therefore their 
presence in surveillance applications is considered necessary. For 
instance, in a thermal image, it is extremely difficult to separate 
two or more overlapping human silhouettes, since their pixels 
exhibit the same or similar intensities [4]. However, by utilizing 
the color data and contrast of the pixels, as well as the depth 
information derived from the optical sensors, we can overcome 
this obstacle. It is thus immediately apparent that optical and 
thermal cameras have both advantages and disadvantages in 
their use in computer vision applications. To get the best of both 
worlds and since the constraints of the two technologies are 
independent and mostly do not occur simultaneously, it is 
extremely beneficial to combine them. By utilizing the high 
resolution and low-cost optical camera's color characteristics and 
then enriching them with the thermal information, the system 
will be able to cope with any man overboard scenario with high 
precision. 

Traditional surveillance systems, that have been developed 
for maritime safety purposes, require an operator who 
simultaneously monitors multiple real-time videos. This 
obviously results in an increased likelihood of error or 
inadequate response, due to reduced visibility. Hence a 
continuous monitoring approach and evaluation of the critical 
event should be adopted, in parallel with the precise detection of 
its position. That can be achieved through the development of 
signal processing and deep learning algorithms and frameworks 
for semantic information extraction (human detection and 
recognition, motion tracking [8], pose recognition [9], [10], 
anomaly detection) from heterogeneous information sources 
(RGB and thermal cameras). Consequently, through the 
implementation of multimodal information fusion techniques, it 
is possible to build an advanced decision support system for 
maritime surveillance applications and man overboard events. 
Given the heterogeneity of data flows originating from different 
optical sensors (RGB and thermal cameras), pattern recognition 
and deep learning algorithms appropriate for the different data 
modalities must be applied. 

The remainder of this paper is organized as follows. Section 2 
discusses related work in human detection frameworks, through 
RGB and thermal imaging. Section 3, briefly presents the 
explored methods for man overboard detection: Outlier detection 
based on Density-based spatial clustering of applications with 
noise (DBSCAN) algorithm and human detection based on 
Histograms of Oriented Gradients (HOG), Haar Cascade 
Classifier (HCC) and You Only Look Once–v3 (YOLOv3). 
Furthermore, we analyze the possibilities and highlight the 
limitations of the aforementioned methodologies. Finally, in 
Section 4, the conclusion is summarized and suggestions for 
future research are introduced. 

2 Previous Work 
In a universal maritime surveillance system, human detection 

is a key issue and must be completely independent of the 
environment as well as light and weather conditions. Hence a 
thermal camera is often superior to optical cameras. Several 
human detection methods through thermal imaging have been 
presented in the literate. Many of them exploit features extracted 
from Histograms of Oriented Gradients (HOG), in combination 
with various classification models (e.g. Support-vector machines 
(SVMs) [11], AdaBoost [12] and adaptive fuzzy C-means 
clustering [13]) in infrared images for pedestrian detection. The 
work of [14] implemented a person detection system in thermal 
video sequences by combining background-subtraction, gradient 
information, watershed algorithm and A* search, whereas in [15] 
the authors investigated segmentation of the head regions for 
human detection in far-infrared images. In the method of [16], 
Contour Saliency Maps and adaptive filters are utilized for 
person detection in thermal images. Several other approaches 
have also been proposed in the literature, including [17] and 
[18], yet these methodologies are based on the fact that body and 
surrounding temperatures differ significantly. This limitation, 
that arises especially during summer, can be managed by using 
Mahalanobis distance for each pixel in combination with edge 
orientation histogram [19]. 

Finally, it is noted that several studies have emphasized the 
importance of real-time home surveillance systems ([20], [21]) 
that focus on fall detection through visual sensors, deep learning 
and computer vision applications (e.g [22]–[24]), however, little 
work has been presented in the literature on the man overboard 
situation. 

3 Explored Techniques for Man Overboard 
Detection 
In the paper at hand, two types of approaches, 

complementary to each other, were considered: (i) outlier 
detection and (ii) human detection. The former case, which is 
responsible for the alert triggering, is easy to employ 
methodology and requires low resources. The latter case is any 
approach capable to detect a person (i.e. bounding box or pixel-
level segmentation). If we have an alert and positive detection of 
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a person, the operators are informed in order to recover the 
casualty. 

3.1 Outlier detection-based approaches 
Today, multiple video streams from RGB cameras are the 

common scenario; low-cost sensors, easy to install and 
accessibility are a few of the related advantages. However, 
processing the provided information is not an easy task; 
especially when we try to monitor something vague [25]. 
Towards that direction, a general detector, indicating unordinary 
behavior appears a viable approach. The core idea lies in 
detecting the change between successive frames [26]. Dense 
changes in the content indicate possible events worthy of 
detection. Such an approach offers two significant advantages: (i) 
limited requirement of hardware resources, i.e. easy on-field 
deployment and real-time operation. 

Let us assume a video sequence of 𝑛 frames. Every frame 𝑖 is 
divided into 𝑚 non-overlapping image patches. Each patch is 
then described by 𝑚 features, which refer to contrast, energy, 
homogeneity and dissimilarity. Then, these patches are clustered 
using DBSCAN [27], a density-based approach. Finally, by 
comparing the number of clusters or the number of outliers 
between consecutive frames, we get an indication of something 
unordinary that appeared, i.e. a significant change in the number 
of clusters or outliers. Once the alert is activated, deep learning 
approaches will scan the latest frames of the sequence and 
inform the operators about the current situation. 

(a) No outliers detected. (b) Two outliers detected. 

Figure 1: Outlier detection during a man overboard event. 

Figure 1 compares two representative frames of a test RGB 
video before (Fig. 1a) and after (Fig. 1b) the man overboard 
situation. In the former, there are no outliers detected, while on 
the latter, due to the significant differences between the 
consecutive frames (i.e. human fall off and turbulence at sea) the 
system indicates that something unusual has happened. When a 
certain amount of outliers, beyond a predetermined threshold, is 
detected, the surveillance framework must trigger deep learning 
algorithms in order to decide if there is indeed a man overboard 
incident (and not i.e. a passing-by bird from the camera) and if 
so, its exact location for the immediate recovery of the victim. 

3.2 Object detection-based approaches 
3.2.1 Histograms of Oriented Gradients (HOG). HOG was a 

popular method used in human detection applications [28]. A 

detection window slides across an image frame wherein a grid of 
cells is created. A histogram of edge orientations, for each cell, is 
extracted, allowing the identification of objects, described 
through the distribution of local intensity gradients. The cells are 
inside larger blocks which are used to overcome illumination 
variations. 

HOG-based detectors using the multi-scale sliding window 
mechanism have long been the dominant approaches for 
pedestrian detection. While no single hand-craft feature has been 
shown to outperform HOG, the combinations of HOG with other 
features have made improvements by making use of 
complementary visual cues [29]. 

(a) False positive detection. (b) False negative detection. 

Figure 2: Unsuccessful detection of human fall off from a 
ship, using HOG. 

As highlighted in Figure 2, it is impossible to predict a man 
overboard situation by using solely HOG features since multiple 
false or non-call alarms occurred (see Fig. 2a and 2b 
respectively). The specific fact contradicts with the ISO/PAS 
21195 standard, which specifies all the technical requirements for 
systems designed to detect a person while going overboard from 
a passenger or cruise ship. 

3.2.2 Haar Cascade Classifier (HCC). HCC is a machine 
learning object detection algorithm where a cascade function is 
trained from a lot of positive and negative images. It is then used 
to detect objects in other images [30]. The cascade classifier 
consists of a collection of stages, where each stage is an 
ensemble of weak learners. The weak learners are simple 
classifiers called decision stumps. HCC is trained using boosting, 
which provides the ability to train a highly accurate classifier by 
taking a weighted average of the decisions made by the weak 
learners. 

Each stage of the classifier labels the region defined by the 
current location of the sliding window as either positive or 
negative. Positive indicates that an object was found and 
negative indicates no objects were found. If the label is negative, 
the classification of this region is complete, and the detector 
slides the window to the next location. 

Figures 3a and 3b pinpoint that HCC is able to locate a 
human fall off with high accuracy. However, similar to the 
HOG-based technique, it triggers numerous false alarms (see Fig. 
3c), in contrary to preconditions of the ISO/PAS 21195 standard. 
Moreover, in spite of the fact that HCC can detect a person 
before and during their fall off, it is not capable of recognizing 
them while they are in the water (see Fig. 3d). This happens 
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because the algorithm does not locate many of the distinct 
features that characterize a human (e.g. arms and legs). This 
drastically reduces the reliability of the video maritime 
surveillance system since (i) the possibility of detecting a person 
gone overboard is lowered and (ii) it is not able to locate the 
exact position of the victim making their rescue more difficult. 

(a) True positive detection. (b) True positive detection. 

(c) False positive detection. (d) False negative detection. 

Figure 3: Partially successful detection of a man overboard 
situation, but with possible false alarms, based on HCC. 

3.2.3 Single Shot Detectors (SSD). SSDs (i.e. YOLO), in 
contrast to other algorithms (i.e. RCNN family) that focus on 
certain parts of the image with a higher probability of containing 
an object, use the whole image in one go in order to detect 
multiple objects in it. In particular, an SSD predicts several 
bounding boxes with their corresponding class probabilities and 
coordinates, a fact that enhances the framework’s performance 
in terms of accuracy and speed. 

The YOLO framework was proposed in 2016 and unlike other 
region-based methods, passes the input image only once to a 
Fully Convolutional Network (FCN) for prediction purposes [31]. 
It is underlined that it is able to process images at more than 45 
frames per second, which is a significant advantage in real-time 
applications, such as the man overboard event. Afterwards, 
YOLOv2 managed to overcome the obstacles of localization 
errors and relatively low recall, comparing to other region-based 
algorithms [32]. More recently, in YOLOv3 the softmax function 
is replaced by independent logistic classifiers for every class and 
consequently, the model maintains outstanding speed but is also 
more accurate, comparing to its predecessor [33]. Additionally, it 
is noted that in YOLOv3, we observe significant improvement in 
small object detection, a fact that may be crucial in an overboard 
event that takes place far away from the predetermined location 
of the surveillance camera. In this paper, we discuss a 
performance evaluation analysis of the YOLOv3 algorithm for a 
challenging but also critical human detection and tracking 
problem, such as the man overboard situation. 

(a) Original RGB frame 
extracted from a test video. 

(b) Falling off human 
detected by YOLOv3. 

Figure 4: Fall from ship detection, during day time, using 
an RGB camera and YOLOv3. 

Figure 4 illustrates a human during his fall off the ship under 
good lighting conditions (e.g. daylight). Figure 4a is an extracted 
frame from an RGB video footage, whereas Figure 4b shows the 
corresponding YOLOv3 output, that has detected the falling 
person with high confidence. In such situation, the YOLOv3 
algorithm in conjunction with optical sensors, constitutes the 
optimal man overboard detection system, due to the RGB 
cameras’ high resolution and enhanced color data. 

(a) Original thermal frame 
extracted from a test video. 

(b) Falling off human 
detected by YOLOv3. 

Figure 5: Fall from ship detection, during night time, using 
a thermal camera and YOLOv3. 

Nevertheless, optical sensors are almost impossible to cope 
with low light conditions and therefore, thermal imaging is 
considered necessary for an efficient video maritime surveillance 
system. In Figure 5a we can see a man overboard situation 
during night hours and Figure 5b clearly depicts that the 
algorithm has successfully detected the falling individual. 

(a) Original RGB frame 
extracted from a test video. 

(b) Passenger detected by 
YOLOv3. 

Figure 6: Passenger detection, during day time, using an 
RGB camera and YOLOv3. 
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(a) Original thermal frame 
extracted from a test video. 

(b) Passenger detected by 
YOLOv3. 

Figure 7: Passenger detection, during night time, using a 
thermal camera and YOLOv3. 

It is noted that human detection solely must not activate any 
kind of alarm. The alerts should be triggered if the position of 
the human, e.g. centroid coordinates of the bounding box, is 
located outside the safety region. That way, cases as in Fig. 6 and 
7, where just an onboard passenger is detected, should not 
trigger an alert. 

(a) Original RGB frame 
extracted from a test video. 

(b) Man overboard detected 
by YOLOv3. 

Figure 8: Man overboard detection for ship safety, using an 
RGB camera and YOLOv3. 

Given the orientation of the cameras and the geometry of the 
ship, fall detection is a trivial matter; if a person is detected 
outside a predefined area of the image (see Fig. 8) then operators 
have to deal with a dangerous situation. However, human 
detection, with minimum or no false-negative rates, requires 
sophisticated deep learning source-consuming solutions. 

4 Conclusions 
In this paper, we evaluated different approaches for man 

overboard detection. The employed techniques ranged from 
traditional approaches to deep learning ones. Early stage results 
indicate that none of these approaches alone can be used for an 
efficient man overboard detection system. However, the trade-
offs for each approach can be mitigated by combinations of more 
than one. The type of combination and the expected outcomes 
were introduced. Future work should concentrate on exploring 
the possibility of using additional information modalities, such 
as radar signals, to improve maritime surveillance system’s 
performance. 

ACKNOWLEDGMENTS 
This research has been co‐financed by the European Regional 
Development Fund of the European Union and Greek national 
funds through the Operational Program Competitiveness, 
Entrepreneurship and Innovation, under the call RESEARCH – 
CREATE – INNOVATE (project code: T1EDK-01169) 

REFERENCES 
[1] E. Örtlund and M. Larsson, “Man Overboard detecting systems based on 

wireless technology,” 2018. 
[2] A. Sevin, C. BAYILMIŞ, İ. ERTÜRK, H. EKİZ, and A. Karaca, “Design and 

implementation of a man-overboard emergency discovery system based on 
wireless sensor networks,” Turk. J. Electr. Eng. Comput. Sci., vol. 24, no. 3, pp. 
762–773, 2016. 

[3] S. Hennin, G. Germana, and L. Garcia, “Integrated perimeter security 
system,” in 2007 IEEE Conference on Technologies for Homeland Security, 2007, 
pp. 70–75. 

[4] R. Gade and T. B. Moeslund, “Thermal cameras and applications: a survey,” 
Mach. Vis. Appl., vol. 25, no. 1, pp. 245–262, Jan. 2014, doi: 10.1007/s00138-
013-0570-5. 

[5] N. Bakalos et al., “Protecting Water Infrastructure From Cyber and Physical 
Threats: Using Multimodal Data Fusion and Adaptive Deep Learning to 
Monitor Critical Systems,” IEEE Signal Process. Mag., vol. 36, no. 2, pp. 36–48, 
Mar. 2019, doi: 10.1109/MSP.2018.2885359. 

[6] S. J. Krotosky, S. Y. Cheng, and M. M. Trivedi, “Face detection and head 
tracking using stereo and thermal infrared cameras for" smart" airbags: a 
comparative analysis,” in Proceedings. The 7th International IEEE Conference 
on Intelligent Transportation Systems (IEEE Cat. No. 04TH8749), 2004, pp. 17–
22. 

[7] J. Mekyska, V. Espinosa-Duró, and M. Faundez-Zanuy, “Face segmentation: 
A comparison between visible and thermal images,” in 44th annual 2010 ieee 
international carnahan conference on security technology, 2010, pp. 185–189. 

[8] C. Lalos, A. Voulodimos, A. Doulamis, and T. Varvarigou, “Efficient tracking 
using a robust motion estimation technique,” Multimed. Tools Appl., vol. 69, 
no. 2, pp. 277–292, Mar. 2014, doi: 10.1007/s11042-012-0994-3. 

[9] I. Rallis, I. Georgoulas, N. Doulamis, A. Voulodimos, and P. Terzopoulos, 
“Extraction of key postures from 3D human motion data for choreography 
summarization,” in 2017 9th International Conference on Virtual Worlds and 
Games for Serious Applications (VS-Games), Sep. 2017, pp. 94–101, doi: 
10.1109/VS-GAMES.2017.8056576. 

[10] I. Rallis, N. Doulamis, A. Doulamis, A. Voulodimos, and V. Vescoukis, 
“Spatio-temporal summarization of dance choreographies,” Comput. Graph., 
vol. 73, pp. 88–101, Jun. 2018, doi: 10.1016/j.cag.2018.04.003. 

[11] R. O’Malley, E. Jones, and M. Glavin, “Detection of pedestrians in far-
infrared automotive night vision using region-growing and clothing 
distortion compensation,” Infrared Phys. Technol., vol. 53, no. 6, pp. 439–449, 
Nov. 2010, doi: 10.1016/j.infrared.2010.09.006. 

[12] Li Zhang, B. Wu, and R. Nevatia, “Pedestrian Detection in Infrared Images 
based on Local Shape Features,” in 2007 IEEE Conference on Computer Vision 
and Pattern Recognition, Jun. 2007, pp. 1–8, doi: 10.1109/CVPR.2007.383452. 

[13] V. John, S. Mita, Z. Liu, and B. Qi, “Pedestrian detection in thermal images 
using adaptive fuzzy C-means clustering and convolutional neural 
networks,” in 2015 14th IAPR International Conference on Machine Vision 
Applications (MVA), May 2015, pp. 246–249, doi: 10.1109/MVA.2015.7153177. 

[14] J. W. Davis and V. Sharma, “Robust detection of people in thermal imagery,” 
in Proceedings of the 17th International Conference on Pattern Recognition, 
2004. ICPR 2004., 2004, vol. 4, pp. 713–716. 

[15] T. T. Zin, H. Takahashi, and H. Hama, “Robust person detection using far 
infrared camera for image fusion,” in Second International Conference on 
Innovative Computing, Informatio and Control (ICICIC 2007), 2007, pp. 310–
310. 

[16] J. W. Davis and M. A. Keck, “A two-stage template approach to person 
detection in thermal imagery,” in 2005 Seventh IEEE Workshops on 
Applications of Computer Vision (WACV/MOTION’05)-Volume 1, 2005, vol. 1, 
pp. 364–369. 

[17] H. Nanda and L. Davis, “Probabilistic template based pedestrian detection in 
infrared videos,” in Intelligent Vehicle Symposium, 2002. IEEE, 2002, vol. 1, pp. 
15–20. 

[18] F. Xu, X. Liu, and K. Fujimura, “Pedestrian detection and tracking with night 
vision,” IEEE Trans. Intell. Transp. Syst., vol. 6, no. 1, pp. 63–71, 2005. 

[19] A. Jo, G.-J. Jang, Y. Seo, and J.-S. Park, “Performance Improvement of Human 
Detection Using Thermal Imaging Cameras Based on Mahalanobis Distance 
and Edge Orientation Histogram,” in Information Technology Convergence, 
Dordrecht, 2013, pp. 817–825, doi: 10.1007/978-94-007-6996-0_85. 



ACM PETRA’20, June, 2020, Corfu Greece I. Katsamenis et al. 

 

 

 

[20] A. S. Voulodimos, D. I. Kosmopoulos, N. D. Doulamis, and T. A. Varvarigou, 
“A top-down event-driven approach for concurrent activity recognition,” 
Multimed. Tools Appl., vol. 69, no. 2, pp. 293–311, Mar. 2014, doi: 
10.1007/s11042-012-0993-4. 

[21] N. D. Doulamis, A. S. Voulodimos, D. I. Kosmopoulos, and T. A. Varvarigou, 
“Enhanced Human Behavior Recognition Using HMM and Evaluative 
Rectification,” in Proceedings of the First ACM International Workshop on 
Analysis and Retrieval of Tracked Events and Motion in Imagery Streams, New 
York, NY, USA, 2010, pp. 39–44, doi: 10.1145/1877868.1877880. 

[22] K. Makantasis, E. Protopapadakis, A. Doulamis, N. Doulamis, and N. 
Matsatsinis, “3D measures exploitation for a monocular semi-supervised fall 
detection system,” Multimed. Tools Appl., vol. 75, no. 22, pp. 15017–15049, 
Nov. 2016, doi: 10.1007/s11042-015-2513-9. 

[23] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau, “Robust video 
surveillance for fall detection based on human shape deformation,” IEEE 
Trans. Circuits Syst. Video Technol., vol. 21, no. 5, pp. 611–622, 2011. 

[24] M. Yu, A. Rhuma, S. M. Naqvi, L. Wang, and J. Chambers, “A posture 
recognition-based fall detection system for monitoring an elderly person in a 
smart home environment,” IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 6, 
pp. 1274–1286, 2012. 

[25] E. Protopapadakis, A. Voulodimos, A. Doulamis, N. Doulamis, D. Dres, and 
M. Bimpas, “Stacked autoencoders for outlier detection in over-the-horizon 
radar signals,” Comput. Intell. Neurosci., vol. 2017, 2017. 

[26] N. Papadakis, A. Litke, A. Doulamis, E. Protopapadakis, and N. Doulamis, 
“Multimedia Analysis on User-Generated Content for Safety-Oriented 
Applications,” in Social Media Strategy in Policing: From Cultural Intelligence 
to Community Policing, B. Akhgar, P. S. Bayerl, and G. Leventakis, Eds. 
Cham: Springer International Publishing, 2019, pp. 161–175. 

[27] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “DBSCAN revisited, 
revisited: why and how you should (still) use DBSCAN,” ACM Trans. 
Database Syst. TODS, vol. 42, no. 3, pp. 1–21, 2017. 

[28] T.-R. Liu, V. Copin, and T. Stathaki, “Human Detection from Ground Truth 
Cameras through Combined Use of Histogram of Oriented Gradients and 
Body Part Models.,” in VISIGRAPP (4: VISAPP), 2016, pp. 735–740. 

[29] T. Liu and T. Stathaki, “Enhanced pedestrian detection using deep learning 
based semantic image segmentation,” in 2017 22nd International Conference 
on Digital Signal Processing (DSP), Aug. 2017, pp. 1–5, doi: 
10.1109/ICDSP.2017.8096045. 

[30] L. Cuimei, Q. Zhiliang, J. Nan, and W. Jianhua, “Human face detection 
algorithm via Haar cascade classifier combined with three additional 
classifiers,” in 2017 13th IEEE International Conference on Electronic 
Measurement & Instruments (ICEMI), 2017, pp. 483–487. 

[31] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: 
Unified, Real-Time Object Detection,” ArXiv150602640 Cs, May 2016, 
Accessed: Mar. 23, 2020. [Online]. Available: http://arxiv.org/abs/1506.02640. 

[32] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in 
Proceedings of the IEEE conference on computer vision and pattern recognition, 
2017, pp. 7263–7271. 

[33] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” ArXiv 
Prepr. ArXiv180402767, 2018. 

 
 
 
 


