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Abstract

Accurate and timely human fall detection is a strong requirement either for the surveillance of crit-
ical infrastructures or for ships. Indeed, sea-faring vessels are one of the most important means for
maintaining the marine economy in many countries by transporting goods or people. However, unfor-
tunate tragic accidents on-board ships involving people, either a member of the ship’s crew or a
passenger who has fallen off the ship may take place, which is known by the term “man overboard”
(MOB). Accordingly, the use of radar sensors for human safety monitoring applications is vital and
is of special interest since it is proven that radar sensors are less influenced by environmental con-
ditions (e.g. fog, rain, temperature) compared to other systems like video cameras. Consequently,
human fall detection from either sea or ground infrastructures is easier to be identified using radars
compared to the conventional methods. This paper focuses in the description of a real experimental
approach based on multiple long-range millimeter-wave band radar sensors for human fall detec-
tion. The stream(s) of information collected by the system, are processed using clustering techniques.
The clustering results are evaluated in terms of the ability to detect and track real human fall
scenarios. The results reveal that the measure of velocity plays a key role in the detection procedure.

Keywords: Man Overboard, Automotive radar, mmWave radar, human fall detection, measurements, IoT,
clustering techniques, k-means, Gaussian mixture model

1 Introduction

In the past few years, the detection of human fall
as a result of accidental or deliberate activity has

been identified of major importance for surveil-
lance systems. In this context, a very important
aim of the International Maritime Organizations
(IMO) is saving the life of passengers and crew
on board ship in an emergency situation, as a
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consequence of either a more general shipping
accident or a more specific MOB case according to
the recommendation of ITU-R M.2285-0 (2013).
Specifically, in cruise ships, approximately 22 peo-
ple fall off the ship each year while 79% of them
do not survive or are considered missing (Örtlund
and Larsson, 2018). Trying to portray the broader
view, an estimate of more than 1000 people are
involved in MOB incidents yearly (Feraru et al,
2020) while the survival rate of such incidents
being extremely low. Thus, MOB is clearly a crit-
ical event that demands immediate handling with
fast detection being the most crucial factor, for the
quickest and most efficient recovery of the victim.

The use of radar sensors for human safety
monitoring and detection applications is a widely
researched topic in recent years. This is even more
vital and of special interest for sea-faring vessels
and MOB cases, since it is proven that radars are
less influenced by environmental conditions, e.g.
fog, rain or similar adverse weather conditions, in
contrast with other systems such as video or ther-
mal cameras. Nonetheless, detecting humans using
any kind of sensor system is a challenging task due
to the wide variety of positions and appearances
which humans can assume. It is even more chal-
lenging considering the case of a ship in motion,
along with its’ sensors, having on-board stationary
or moving people with completely unpredictable
behavior very often, whom in case of an MOB
incident they will be found in sea level in the mat-
ter of seconds. Other common human detection
applications include the recognition of human fall
from ground infrastructures and detection of fence
intrusion (Yousefi et al, 2008). Towards this direc-
tion, in Bhadwal et al (2019), the authors propose
a surveillance system utilizing a Wireless Sensor
Network (WSN) and computer vision technology.
Similarly, the authors in Berrahal et al (2016),
propose a cooperative border surveillance solution
composed of WSNs and unmanned aircraft vehi-
cles (UAVs). All the above summarize why most of
the studies have been based on other sensors, e.g.
video, thermal, infrared cameras & laser scanners.

1.1 Related Work

In the bibliography we encounter similar
approaches that have been employed and pro-
posed in this context. In Sevin et al (2016), the
authors use a WSN to detect a MOB incident

while the developed system in Örtlund and Lars-
son (2018) is comprised of transceivers using
Long Range (LoRa) techniques and the aid of an
artificial intelligence (AI) system with deep learn-
ing capabilities. Similarly, in Sheu et al (2020),
LoRa Access Points (APs) were used where the
authors proposed a complementary dynamic GPS
tracking and monitoring system, consisting of
wearable sensing aids and physical electric fences,
all under a centralized control system. RGB1 and
thermal sensors can be found in Katsamenis et al
(2020), where the possibilities and limitations of
vision-based systems are discussed. In Zhang et al
(2020), the authors propose a novel object detec-
tion and tracking method of moving objects with
unmanned surface vehicles. Subsequently, the
proposed model is evaluated with data obtained
by the camera and the laser radar and verified
through real experimentation in a river. In Jeong
et al (2018), the authors propose a new deep
belief network model for radar signal classifica-
tion of real marine radar signals. The authors
showed that the proposed model performs effi-
ciently in noisy environment and thus enhancing
the detection and identification of the targets.

On another front, clustering of measurement
data is important, especially in the case of radar
signal processing, where the need of detection
points clustering becomes obvious while using
high-resolution radar sensor systems. In most
cases, clustering is often used as a preprocess-
ing step for classification of the measured data.
Currently, there is a plethora of work that
focuses on clustering techniques of radar data,
mainly for automotive radar sensors (Stolz et al,
2018; Li et al, 2018; Scheiner et al, 2019).
In Stolz et al (2018), a novel approach for
automotive radar data clustering is presented,
while an adaptive clustering approach based on
a range/angle/velocity-grid generated originally
from the radar signal processing and angle esti-
mation stage for automotive high resolution radar
sensors is presented in Li et al (2018). In con-
trast to Stolz et al (2018); Li et al (2018), the
authors in Scheiner et al (2019), present a novel
approach by first and foremost filtering out static

1RGB sensors capture visible light and recognise/detect the
colour of a material in RGB (red, green, blue) scale, while
rejecting the unwanted infrared or ultraviolet light
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background data before applying a two-stage clus-
tering approach on data collected by automotive
radar sensors. In (Zhao and Su, 2017), a novel
vehicle detection method is proposed by utilizing
the Gaussian mixture model (GMM) in order to
cluster the radar data to segment foreground tar-
gets from the clutter background. In Scheel and
Dietmayer (2019), a variational radar model for
vehicles is presented. The measurement model is
learned from actual data using variational Gaus-
sian mixtures and avoids excessive manual engi-
neering. The authors demonstrate the approach
on experimental data, and it is shown that the
data-driven measurement model outperforms a
manually designed model.

However, all these works focus on the detection
of moving targets in traffic scenes. To date and to
the best of the authors’ knowledge, this is the first
time that clustering of experimental radar data
such as coordinates & velocity are utilized for the
detection & tracking of an MOB scenario.

1.2 Contributions

In this work, clustering techniques are utilized for
the first time on an extended set of experimental
radar data for the detection & tracking of MOB
scenarios. To this end, the k-means and GMM
algorithm are exploited for clustering of the col-
lected radar data, related to distance & velocity.
Different clustering options of the data are com-
pared to gain semantic insight and the role of
velocity in the detection procedure is highlighted.
Also, the data retrieval procedure is presented.

The paper is organized as follows. Section 2
describes the system architecture, the topology of
the sensors, along with the measurement equip-
ment. In Section 3 the structure of the retrieved
radar data is described. Section 4 provides the
clustering analysis applied on the dataset. Section
5 provides the clustering results and the compar-
ison of the algorithms in terms of the ability to
detect a human fall. In Section 6 the concluding
remarks can be found.

2 System Architecture &
Measurement Setup

A Radar (radio detection and ranging) is a detec-
tion system for objects, enclosing additional infor-
mation such as range, velocity and angle, based on

Fig. 1: Radar configuration measurement setup

Fig. 2: System Topology

electromagnetic waves in the radiofrequency spec-
trum extending from around 3MHz to 110GHz
(3mm to 100m). Waves in this frequency range
are characterized by only weak interactions with
dust, fog, rain and falling snow. Thus, radars
become ideal for detecting objects in the field,
even under extreme weather conditions. Com-
mon applications are in air, marine and terrestrial
traffic control (speed controls), in meteorology
(weather radars), in earth science (Ground Pen-
etrating Radar or GPR), in astronomy (radio
telescopes) as well as in the automobile industry
(Adaptive Cruise Control or ACC).

The measurement scenarios were all conducted
in the Nikaia Olympic Weightlifting Hall which is
part of the University campus. This building was
reserved for the needs of the measurement cam-
paign and provided an ideal setup for the MOB
simulations. It is noted that the balcony was con-
structed in such a way, with metal grid mesh
floor and metal railings, that provided a realis-
tic representation of a ship’s floor and gunwale.
The measurement scenarios that were planned to
be executed involved throwing a human-shaped
doll from the balcony of the second floor of the
building, as it appears in Figure 1.
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The system comprises of multiple Continen-
tal’s ARS 408-21 (Continental Engineering Ser-
vices, 2018) long range radar sensors that operate
in the frequency spectrum of 76-77GHz. In our
experiments, the first radar (R1) is placed 14m
above the ground facing downwards whereas the
second (R2) is facing sideways and is placed in a
position where its projection on the vertical and
horizontal axis, regarding R1, is 4 and 6 meters
away respectively. This can be seen in Figure 1
where the topology of the two sensors is depicted.
During the experiments, a human-shaped doll,
1,60m tall and weighing 40 Kgs, was guided to per-
form free fall from a position 3-6 meters below R1
and 2 meters adjacent to R2, as seen in Figure 1.

This type of radar has two scanning modes,
while in operation surveying the area under con-
sideration, performing a scan in the short (SR)
and far range (FR) at each measurement cycle.
In the short range, the sensor covers a distance
ranging from 0.20m to 70m/100m with azimuth
& elevation angle Field of View (FoV) of ±60°&
20°respectively and 0.20m to 250m with a FoV
of ±9°/14°in the far range accordingly. In both
modes, the distance measuring accuracy is high,
±0.10m and ±0.40m, in the short and far range
respectively, while the velocity range is -400km/h
to 200km/h, for leaving and approaching objects
with a measuring accuracy of 0.1km/h.

These sensors are connected in the system via
a serial connection interface using the Controller
Area Network (CAN) bus standard specification.
Each sensor is connected to a Raspberry Pi 3+
microcontroller with an add-on extension board
(PiCAN2) that provides CAN bus interface capa-
bility. The microcontroller is responsible for the
bus initialization and the overall operation of the
sensor via special commands in hexadecimal val-
ues of the form “CAN ID #CAN MSG”. The
CAN ID specifies the type of configuration setup
while the CAN MSG denotes the specific param-
eter(s) that will be configured via this message
eventually. Each radar is connected via this high
speed (500 kbit/s) CAN bus interface with the
host microcontroller (Raspberry Pi) and is capable
of transmitting a full set of measurements, in both
short and far range, every 70-80ms approximately.
The data, can then be forwarded to a single
or multiple computer (or computing infrastruc-
tures), more powerful than the microcontroller,

Table 1: List of CAN ID messages

CAN ID Content

0x200 Radar sensor configuration
0x201 Radar status
0x600 Cluster status (list header)
0x700 Software Version Identification
0x701 Cluster general information
0x702 Cluster quality information

that will carry on the additional post process-
ing. This can be implemented in various ways
either using a publisher/subscriber model such as
MQTT, RabbitMQ and ZeroMQ, or by using a
more custom approach with CANnelloni (Rein-
hardt et al, 2015). CANnelloni2 implements a
Socket-based CAN over Ethernet tunnel, in Linux
operating systems (OS), in order to transfer CAN
frames between two machines using UDP3 pack-
ets. Figure 2, presents the configuration setup
described above and summarizes the system archi-
tecture used throughout the measurements.

3 Data Retrieval

The radars are configured to operate in “Cluster
mode”, providing information data such as posi-
tion, velocity and radar cross section (RCS) for
each cluster found. Each such cluster is synony-
mous to a single point or entity discovered in
the surrounding area. The position of each cluster
is given in a Cartesian coordinate system rela-
tive to the position of the sensor, as shown in
Figure 3, while the velocity is calculated relatively
to the sensor’s speed (if it is mounted in a mov-
ing platform, either a vehicle or a ship). A full
measurements scan is comprised of various CAN
messages, as they appear in Table 1, each holding
a specific piece of information. The measurement
cycle starts with a hexadecimal CAN ID message
[0x600] (or “Cluster status”) which denotes the
beginning of the frame, along with the number
of clusters identified during the full scan in both
modes, short and far range. Immediately after-
wards follows the messages that carry the cluster
general and quality information with CAN ID

2The source code repository at GitHub is available at https:
//github.com/mguentner/cannelloni

3 User Datagram Protocol (UDP), is part of the Internet pro-
tocol (IP) for low-latency communication and loss-tolerating
connections over the Internet

https://github.com/mguentner/cannelloni
https://github.com/mguentner/cannelloni
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Fig. 3: Radar coordinate system

[0x701] and [0x702]4 respectively. Each [0x701]
message contains the position, velocity and the
RCS of a cluster and is sent repeatedly for all the
detected clusters (first SR scan, then FR scan) in
that cycle. Figure 4 depicts all the clusters found
after a measurement scan in an area of 20x20m,
which forms the Area of Interest (AoI), with the
clusters’ coordinates being relative to the sensor’s
location (0,0). The AoI, which can differ in shape
and size, forms an indicative area that is moni-
tored more closely and constantly given the overall
area that is covered by the sensors.

In addition to the clusters’ location, the sen-
sor quality information is forwarded also for all
identified clusters. The information that can be
extracted, help someone to identify and discard
clusters that are not valid, ambiguous, station-
ary or artefacts. This elimination process of the
unwanted clusters discovered per measurement
cycle, reduces the load of post-processing by the
machine learning, or any other algorithms applied,
and increases the chance of identifying a target
with higher accuracy. Indicatively, the clusters
that are mainly taken in consideration during the
post processing belong to one of the following
categories i) Valid, ii) Valid Low RCS, iii) Valid
Azimuth Correction, iv) Valid No Local Maxi-
mum, v) Valid Suspicious Angle, and vi) Valid
High Child Probability. With this in mind, in

4The CAN ID messages [0x702] carrying clusters’ quality
information are not sent by default, and this option must be
activated manually.
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Fig. 4: Indicative measurement of an area of inter-
est (AoI). The red asterisk reveals the location of
the sensor

Figure 5 we can distinguish valid and invalid clus-
ters after a measurement scan. The blue and red
dots denote the valid and invalid clusters respec-
tively, while the green dot at (0,0) specifies the
location of the sensor.

4 Clustering Analysis

In this section, the utilization of k-means and
GMM algorithm on real extracted radar mea-
surement data, is presented. In particular, the
clustering concept of the obtained radar data is
analytically described. Subsequently, three clus-
tering scenarios based on different measures, are
analyzed.

4.1 k-means Analysis and Setup

In this subsection, the clustering procedure of data
with the k-means algorithm, is described. The
extracted radar data from each measurement sce-
nario are separated into a total number of N time
snapshots they feed as input to k-means algo-
rithm. In this analysis, the k-means algorithm is
fed with the measures of coordinates (position)
and velocity of the preprocessed captured data.
It is noted that the snapshot analysis of the cap-
tured radar data and all the preprocessing steps
are beyond the scope of this paper.

The k-means algorithm performs clustering of
the input data in order to separate the samples of
the data (observations) into k groups (clusters).
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Fig. 5: Indicative measurement scan of an AoI
with the blue & red dots representing valid &
invalid clusters respectively, and the green dot the
location of the sensor

Note that the clusters formed by k-means algo-
rithm are not to be confused with the clusters
(points) extracted by the radar. For the rest of the
analysis, the clusters formed by the k-means algo-
rithm will be referred to as groups. The output
of the algorithm provides the samples of the mea-
sures as well as the centroids of each group formed.
In short, the steps of k-means algorithm which
applied to the retrieved radar data are described
as follows:
Step 1. Choose initial k for the center (cen-

troids) of the groups. Generally, the ini-
tialization is arbitrary. Alternatively, the
k-means++ algorithm (Chapelle et al,
2006) can be utilized for cluster center
initialization.

Step 2. Compute the distances between the cen-
ters of the groups and the samples of each
observation. Let x be a set of observations
and S = {S1, S2, . . . , Sk} a set of k groups
with µk denoting the centers of the sam-
ples at Sk. Then, the goal is to minimize
the metric

∑
x∈Si

∥x−µi∥2. The minimiza-

tion of this metric can be performed in
terms of the Hamming distance, correla-
tion distance, Euclidean distance etc. In
this work, the square of the Euclidean
distance was utilized for the execution of
k-means algorithm.

Step 3. There are two ways to proceed:

• Batch update - Assign each observation
to the group with the closest centroid.

• Online update - Individually assign
observations to a different centroid if
the reassignment decreases the sum
of the within-group sum-of-squares
(WCSS) point-to-group-centroid dis-

tances argmin
S

k∑
i=1

∑
x∈Si

∥x− µ∥2.

In this work, the batch update method is
considered.

Step 4. Compute the average of the observations
in each group to obtain k new centroid
locations.

Step 5. Repeat steps 2 through 4 until group
assignments do not change, or the max-
imum number of iterations is reached.
In this k-means algorithm, a maximum
number of 100 iterations is considered.

The assignment for the appropriate value of k
is dynamic and it is not performed manually. In
particular, for a given range of the values of k,
the algorithm considers every single value among
a maximum number of K groups. Each value is
separately evaluated in order for the optimal k
to be selected. In this analysis, the optimal value
of k is selected through the silhouette criterion
(Kaufman and Rousseeuw, 1990), which is a sim-
ple and effective method for finding the optimal k.
A high silhouette value indicates that an observa-
tion is well matched to its own group, and poorly
matched to other group. The value of k that is
found to contain the highest average silhouette
value, is chosen to be fed as input to the k-means
algorithm.

Once the appropriate k has been selected, the
observations from the measures of distance and
velocity are fed into the k-means algorithm indi-
vidually or as a combination. The goal is to eval-
uate the k-means algorithm upon the extracted
preprocessed radar data and obtain insight and
semantic information for MOB-related scenarios.

4.2 Feeding the k-means Algorithm

In this subsection, the feeding procedure of the
preprocessed radar data on k-means algorithm, is
described. In particular, the effect of the distance
and velocity measure on the clustering proce-
dure is captured separately and jointly. To the
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Fig. 6: Flow diagram of the distance-based k-
means clustering

best of the authors’ knowledge, this is the first
time that the effect of different measures such
as the distance and velocity on the extraction
of semantic information for human fall detection
from sea and ground infrastructures, is captured
for experimental radar data. Accordingly, the k-
means algorithm is described for the three cases of
the feeding procedure that have been identified.

4.2.1 Distance-based k-means
Clustering

In this case, the k-means algorithm accepts as
input the coordinates of the preprocessed data
of an AoI. In particular, the feeding procedure
can be performed for only one measurement snap-
shot or for a given set of snapshots. A predefined
range of consecutive snapshots defines a window
of length L snapshots in time. For a desired given
window, the AoI is defined and the preprocessing
of the coordinates of the clusters is performed. In
this way, it is possible to extract and analyze the
obtained radar data for different snapshots over a
whole measurement scenario.

Next, the coordinates of all clusters which are
contained in a given window are evaluated based
on the silhouette criterion. In particular, for a
given range of the values of k, exhaustive search is
executed and the optimal value for k is selected.
Subsequently, the k-means algorithm is executed
upon the coordinates data for the optimal value
of k, according to the procedure described in the
subsection 4.1. The overall procedure is depicted
in Figure 6.

4.2.2 Velocity-based k-means
Clustering

In this case, the k-means algorithm accepts as
input the velocities of the preprocessed clusters of
an AoI. In particular, during the feeding proce-
dure of the k-means algorithm, the velocities of the
preprocessed clusters obtained by the radar, are

Fig. 7: Flow diagram of the velocity-based k-
means clustering

Fig. 8: Flow diagram of the distance- and
velocity-based k-means clustering

extracted for a given set of snapshots. Following
the same procedure as previously, the silhouette
criterion is applied on the preprocessed velocity
data and the optimal value of k is found. The
k-means algorithm is now executed for the opti-
mal value of k. As an output of the algorithm, K
groups of clusters are formed based on the veloc-
ity of the clusters. The average group velocity
is also obtained. The overall procedure that was
described is depicted in Figure 7.

4.2.3 Distance- & Velocity-based
k-means Clustering

In this case, the k-means algorithm accepts as
input both the coordinates and the velocities of
the preprocessed clusters of an AoI. The overall
set which is fed to the k-means algorithm now con-
sists of the preprocessed clusters’ coordinates and
velocities for a given AoI. The set which is formed,
is evaluated through the silhouette criterion in
order for the optimal k to be obtained. Next, the k-
means algorithm is executed for the optimal value
of k. As an output of the algorithm, k groups of
clusters are formed by considering both the coor-
dinates and the velocities of the input set. The
centroids of the k groups are also obtained. The
overall procedure that was described is depicted
in Figure 8.

4.3 Gaussian mixture model

In this subsection, the basic principles of the
Gaussian mixture model (GMM) clustering, are
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(a) (b)

Fig. 9: Illustration of the groups that formed after applying k-means clustering upon the clusters’ coor-
dinates of a window, for (a) the 1st window and (b) the 2nd window

presented. GMM can be used to group the data
in much the same way as k-means by assuming
that the data follow Gaussian distribution. How-
ever, since GMM is a distribution-based clustering
method, the model output is not a hard assign-
ment of points to specific groups. Instead, the
algorithm is based on the probability that a point
belongs to a Gaussian distribution (group). Sub-
sequently, the parameters of each Gaussian θ (i.e.
variance/covariance, mean and weight) need to
be addressed in order to cluster the measurement
data, but first the knowledge of which sample
belongs to what Gaussian, is necessary.

This is achieved through the expectation max-
imization (EM) algorithm. At a high level, the EM
algorithm can be described as follows:
Step 1. Initialize random Gaussian parameter θ.
Step 2. Proceed to the following:

a) Expectation Step: Compute P[xi = g |
θ], that is the probability that the sam-
ple i came from the group g given the
Gaussian parameter vector θ.
b) Maximization Step: Update the Gaus-
sian parameter θ, i.e., recalculate θ of
each group (distribution).

Step 3. Repeat Step 2, until convergence has been
achieved.

Similar to the k-means algorithm, the GMM
is fed with the measures of coordinates (position)
and velocity of the preprocessed captured data
and the assignment for the appropriate value of k
is achieved through the silhouette criterion. Simi-
lar to k-means analysis, the observations from the
measures of distance and velocity are fed into the
GMM algorithm individually or as a combination
in order to obtain semantic information for MOB
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Fig. 10: Illustration of the groups formed after applying k-means clustering upon the clusters’ velocities
of a window, for (a) the 1st window and (b) the 2nd window

scenarios. The feeding procedure follows the same
lines as the one presented in Figs. 6–8, and thus
it is omitted here for brevity.

5 Results & Discussion

In this section, the clustering analysis is applied on
the experimental preprocessed radar data and it is
evaluated in terms of the ability to extract seman-
tic information for a MOB scenarios. The rep-
resentative measurement scenario that has been
chosen to be evaluated through the k-means and
GMM clustering involve the throwing of a human-
shaped doll from the balcony of the second floor
of a building. It is worth mentioning that the
measurement campaign fully complies with the
ISO/PAS 21195:2018(E) (2018) standard, i.e., the
guidelines and regulations in order to emulate real-
istically a MOB scenario. The radar from which
the measurement data have been obtained is R1,
as shown in Figure 1. This scenario under evalua-
tion consists of N=290 snapshots. The maximum
number of groups that can be formed is set toK=4
and the window for which the clusters have been
obtained is L=6. The data of two representative
and consecutive windows have been selected to be
preprocessed and subsequently to be fed into the
clustering algorithms. In the next subsections, the
clustering algorithms are evaluated and compared

in terms of the ability to detect and track a MOB
scenario.

5.1 Impact of Coordinates

In Figure 9, the groups which formed after apply-
ing the k-means algorithm upon the coordinates
of the clusters, are shown.

The AoI that has been defined is also depicted
in Figure 9 and the radar R1 is depicted with green
dot. In Figure 9a, two clusters have been formed
and consequently k=2. This value was obtained
after applying the silhouette criterion on the input
data. The centroids of the two groups are also
depicted. In Figure 9b, the k-means algorithm is
applied on the coordinates of the clusters obtained
from the 2nd window. As shown in Figure 9b, the
radar detects new clusters during this range of
snapshots. Three groups have now been formed
and consequently k=3. It is also observed that 3
new centroids have now been identified.

Notice that in both Figures 9a and 9b, it is
possible that a group contains clusters that corre-
spond to the human-shaped doll which is falling.
Indeed, after obtaining the corresponding veloci-
ties of the clusters from each group, it is observed
that in both Figures 9a and 9b, Group 1 consists
of some clusters with velocity. The velocities of
the groups are shown as a function of the num-
ber of clusters. Consequently, it can be concluded
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(a) (b)

Fig. 11: Illustration of the groups formed after applying k-means clustering upon the clusters’ coordinates
and velocities of a window, for (a) the 1st window and (b) the 2nd window

that there is a target within Group 1 for both
figures which is most probably falling. Unfortu-
nately, although the average location of Group
1 is known, it is not easy to observe the accu-
rate spot at which the doll is identified upon the
coordinate map. The GMM coordinate-based clus-
tering provided almost identical clustering results
with the one conducted by k-means and no supe-
riority of GMM over k-means is witnessed. Thus,
the GMM coordinate-based clustering results are
omitted here for brevity.

5.2 Impact of Velocities

In Figure 10, the groups that have been formed
after applying the k-means algorithm on the veloc-
ities of the clusters, are illustrated. The average

velocity of each group is also shown. The cor-
responding coordinates of the clusters from each
group are identified and depicted upon the coor-
dinate map. Interestingly, notice that in both
Figures 10a and 10b, the velocities of the Group
2, correspond to some clusters of the identi-
fied falling target, i.e., of the doll. In particu-
lar, Figure 10a illustrates the groups’ velocities
as a function of the number of clusters. The
velocities of Group 2 increase linearly and the
average velocity is 3 m/sec. The corresponding
coordinates of the clusters of the Group 2 for
the 1st window are located upon the coordinate
map at approximately Y=4m. Consequently, it
is observed that some clusters which appear at
Y=4m have an increasing speed, as indicated by
the velocities of Group 2. In Figure 10b, similar
results are observed for the 2nd window. However,
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(a) (b)

Fig. 12: Illustration of the groups formed after applying GMM clustering upon the clusters’ coordinates
and velocities of a window, for (a) the 1st window and (b) the 2nd window

in this case, the average velocity of Group 2 is
6 m/sec and the corresponding clusters have now
been identified beyond Y=5m upon the coordi-
nate map. In other words, a target which consists
of some clusters with increased speed, has been
observed. In addition, the average velocity of
Group 1 tends to zero for both Figures 10a and
10b, which makes the detection and the tracking
of the falling target easily detectable. To conclude,
it seems that velocity plays a key role in the detec-
tion of a fall although the accurate average posi-
tion of each group cannot be clearly located. When
the clusters’ velocities increase, the human fall is
clearly tracked in two consecutive windows. The
GMM velocity-based clustering, provided almost

identical results with the one conducted by k-
means and no superiority of GMM over k-means is
witnessed. Thus, GMM velocity-based clustering
results are omitted here for brevity.

5.3 Impact of both Coordinates and
Velocity

In Figure 11, the groups that have been formed
after applying the k-means algorithm on both the
coordinates and the velocities of the clusters, are
illustrated on the coordinate maps. The respective
groups of velocities are also depicted.

As one may notice, the clustering that was
performed in Figure 11a, is similar to the one
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performed in Figure 9a. This is because the coor-
dinates of the clusters with velocity, are very close
to the centroid of Group 1. In this case, the coor-
dinates of Group 1 seem to affect the clustering
more. In other words, Group 1 velocities are not
that high in order for the algorithm to form a sepa-
rate group consisted only of high velocity clusters.
However, one can conclude that there is a falling
target within Group 1, but it cannot be clearly
identified and tracked upon the coordinate map.

In Figure 11b, 4 groups have been formed.
Interestingly, although most of the clusters’ coor-
dinates of Group 2 and Group 3 are very close, two
different groups have been formed. This is because
the respective velocities of Group 2 and 3 have
very different velocities and k-means is affected
more by the measure of velocity. In this case,
the high velocity clusters form Group 2, which is
located on the coordinate map. Now, the detec-
tion and the tracking of the falling target is much
easier to be detected, i.e., in Group 2 with cen-
troid at approximately Y=5m it is observed there
is a target falling with approximate average veloc-
ity of 6 m/sec. The rest of the groups have zero
average velocity and thus it can be concluded that
no other fall upon the AoI exists.

In Figure 12, the results of GMM clustering
using both the clusters’ coordinates and velocities
of the two consecutive windows are depicted. In
both windows, the silhouette criterion implies k=4
groups. The average locations and velocities of the
groups are also presented. Surprisingly, in contrast
to Figure 11a, the GMM clustering is superior to
the one provided by k-means. Indeed, as shown in
Figure 12a, the GMM algorithm isolates the clus-
ters with an increasing velocity into Group 2. For
the rest of the clusters, the classification seems to
be based on their coordinates. In this case, the
clusters’ coordinates of the group with the highest
average velocity, i.e., Group 2, have been located
upon the coordinate map and the average loca-
tion has been accurately identified. In other words,
both the average location and the average velocity
of the falling human-shaped doll can be observed.
Similar to Figure 12a, in Figure 12b, the GMM
algorithm isolates the clusters with the highest
velocity into Group 4. The corresponding average
location of Group 4, is now identified at approxi-
mately Y=5m and the tracking of the falling doll
between Figure 12a and Figure 12b, is now pos-
sible. By comparing Figs. 12a and 12b, it is easy

Fig. 13: Illustration of the groups formed after
applying k-means clustering upon the clusters’
coordinates and velocities of a window, captured
after the fall

to observe that the doll is falling and it is now
located at approximately Y=5m with an average
velocity at approximately 6 m/sec.

For completeness and in order to illustrate
the importance of both clustering techniques in
the extraction of semantic information about
the detection of fall, Figure 13 is presented. In
Figure 13, the illustrated 4 groups have been
formed after applying the k-means clustering upon
the clusters’ coordinates and velocities of a win-
dow, intentionally taken after the end of the fall.
The results derived through GMM are identical
to the ones presented with k-means and thus they
are omitted. As one can easily observe, all the
groups that have been formed have approximately
zero average velocity. As the average velocity of
all clusters is approximately equal, both k-means
and GMM are affected more by the coordinates of
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the clusters. Notice that most of the groups’ clus-
ters are scattered upon the coordinate map and
no object can be clearly distinguished. This is in
contrast to both Figs. 11a and 11b, where most
clusters of the Group 1 and 2, respectively, are
gathered around the centroid of each group and
consequently, the target is easier to be detected.

6 Conclusions & Future Work

In this paper, the study of a system based on
long-range millimeter-wave band radar sensors for
human fall detection and tracking based on a
real experimental approach, was performed. Sub-
sequently, the k-means and GMM clustering was
analyzed and utilized for the extraction of seman-
tic information. To this end, a real measurement
scenario was studied, and both k-means and GMM
algorithm were applied upon the real measure-
ment radar data and compared to gain insight. It
was shown that although the clustering is affected
both by the coordinates and the velocities of the
clusters, the measure of velocity seems to provide
more optimistic results in terms of the detec-
tion of human fall. It was shown that, if the
clusters are closely related in terms of coordi-
nates, the algorithms are strongly affected by the
clusters’ velocities. Vice versa, if the clusters are
closely related in terms of their velocities, the
algorithms are strongly affected by the clusters’
coordinates. When both coordinates and velocities
were utilized for clustering, the GMM algorithm
was superior to k-means algorithm in detecting
and tracking the human fall. The results also
revealed that the proposed approach contributes
to the extraction of semantic information about
the detection and tracking of a human fall and the
combination of both coordinates and velocities of
the clusters seems to be the most insightful.

As a future work, the clustering results of the
presented work can be fed into various machine
learning algorithms and neural networks as an
extra feature of the training data sets, in order to
be utilized and tested in a real MOB scenario. A
further extension is to configure the proposed clus-
tering algorithms so that they can enable real-time
tracking of a human fall scenario.
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