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Abstract: One of the most crucial emergencies that require instant action to be taken during travel-

ing across water is the so-called man overboard (MOB). Thus, constant monitoring equipment needs 

to be installed for the fast notice and detection of the victim to be rescued, if an incident happens. 

Despite the fact that different installations such as radar sensors, thermal cameras etc., can be handy, 

a combination of these could be beneficial yet it would increase the complexity. Nevertheless, the 

full potential may be not reached yet. The key component to what needs to be done in order to 

achieve the utmost accuracy is artificial intelligence (AI). That is, with the aid of AI, one can deploy 

an automated surveillance system capable of making its own humanlike decisions regarding such 

incidents like MOB. To achieve this, fully organized real-time cooperation among the concerned 

system components is essential. The latter holds since in such dynamically changing operational 

environments like these, information must be distributed fast, errorless and reliably to the decision 

center. This study aims to analyze and demonstrate the outcome of an integrated sensor-based sys-

tem that utilizes AI, implemented for ship incidents. Different machine learning algorithms were 

used where each one of them made use of information that originated from a cluster of radar sensors 

located remotely. In particular, the deployed system’s objective is to detect human motion so it can 

be used to protect against potentially fateful events during ship voyages. 
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1. Introduction 

As we step towards the fourth industrial revolution where Ultra-Reliable and Low-

Latency Communications (URLLC) see daylight, the need of exploiting safety-related sys-

tems is emerging. Thus, a plethora of researchers are currently investigating the capabili-

ties of miscellaneous Internet of Things (IoT) architectures aiming at safety in crucial in-

frastructure. That is, due to the vast number of different IoT approaches it is essential to 

evaluate not only one’s potential but also its drawbacks as well. 

Machine learning (ML), likewise, is a major technology that has gained a lot of atten-

tion in recent years because of its astonishing capabilities of manipulating huge sets of 

data and, hence, extracting ready-to-use rich, useful information determined according to 

the system demands. Having said that, it is straightforward that a multisensor equipped 

infrastructure wherein accumulated information is sent to a centralized decision-making 

AI-aided system could be developed. Accordingly, the AI system could be capable of 

making decisions which, in turn, would be beneficial in preventing or notifying incidents. 

It is stated that automation is the key difference between an AI-aided system and a 

conventional one; the use of AI enriches the system with the intelligence to decide itself 
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about the upcoming information, thus decreasing its complexity and processing time. 

Moreover, it gives the system the capability to easily interpret more scenarios by training, 

hence no new source code needs to be written. Additionally, it becomes clear that the need 

of a person constantly monitoring and interpreting the radar information is no longer nec-

essary. 

Machine learning is not a new concept in the scientific field of computer science. 

Starting from computational learning and pattern recognition, one can see nowadays its 

capability in analyzing and processing vast datasets containing millions of rows, whereas 

it has also gained the ability to learn through its mistakes [1]. 

One of the most important steps in machine learning development is the feature se-

lection procedure, i.e., the composition of N-1 columns of a dataset. It is noted that the 

Nth column is occupied for the examples’ responses. The feature selection part is essential 

in order to construct a proper dataset since poor features result in degradation of the al-

gorithm. Nevertheless, there is no standard way to select the suitable features and the 

process is usually empirical where numerous statistical metrics are calculated. 

Having generated the dataset, one of the next steps is usually the reduction of the 

number of features as some of them happen to have no impact at all or degrade the sys-

tem’s classification accuracy. This occurs because of the lack of absolute knowledge about 

what features one should use during the feature selection step preceded. In [2], the authors 

utilized deep learning techniques into hyperspectral data classification, where the highest 

classification accuracy was achieved. To deal with the high dimensionality, feature reduc-

tion techniques such as feature importance or principal component analysis (PCA) can be 

used here [3]. In [4], the authors introduced a Cross Attention Network for few-shot clas-

sification in order to recognize unlabeled samples from unseen classes given only few 

labeled samples. 

The last step is the tuning and training of the machine learning algorithms on a slice 

of the dataset created (training set). Results using the trained model on another slice of 

the dataset (validation set) can be taken as feedback to enhance the dataset features and/or 

change the algorithm’s parameters. When generalization is said to have been achieved, 

the total accuracy of the algorithm is calculated on the last slice of the dataset (test set). In 

this study all the data used were obtained from experiments that have been performed. 

To the best of authors’ knowledge, this is the first time that a system utilizes both the 

radar technology and the AI robustness at the same time. Nonetheless, similar approaches 

have been employed and proposed in the literature. In [5], the authors use a wireless sen-

sor network (WSN) to detect a MOB accident whether in [6] the developed system com-

prised of transceivers using long range (LoRa) technique. LoRa access points (APs) were 

also used in [7] where the authors proposed a dynamic GPS tracking and monitoring sys-

tem, also consisting of wearable sensing aids, physical electric fences and a central control 

system. RBG and thermal sensors can be found in [8] where the possibilities and limita-

tions of vision-based systems are discussed. Furthermore, for the person in water (PIW) 

issue in particular, an ΑΙ-aided system can be found in [9] where PIW detection using 

UAVs and deep learning object detection technology were employed to locate the person 

in need. In [10], an unmanned aerial vehicle (UAV) system for search and rescue (SAR) 

using global navigation satellite system techniques and computer vision was proposed. 

On another front, by considering multiclass node classification and link prediction 

tasks on three real-world networks, the authors in [11] proposed an algorithm based on 

feature hashing for generating node embeddings. In [12], the authors proposed a novel 

algorithm to solve a multiobjective optimization problem. To conclude, it becomes clear 

that our contribution in MOB approach using radar sensors and ML techniques is novel. 

The system proposed using the aforementioned tools aims to maintain the vessel’s fine 

operation by detecting and notifying abnormalities, preventing therefore any incidents 

that can occur. 
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The paper is organized as follows. Section 2 describes the system architecture and the 

topology of sensors, along with the main assumptions made. In Section 3 the total prepro-

cess flow is provided and the key points are separated and clarified. Section 4 provides 

the intuition and illustrates the different approaches of machine learning algorithms ap-

plied on the dataset. Finally, Section 5 concludes the paper. 

2. System Architecture and Experiment Description 

The architecture that follows is formed by placing two radar sensors, hereafter called 

R1 and R2, on the perpendicular axes x and y, respectively. The sensors are assumed to be 

identical having the same field of view (FoV) in terms of solid angle and maximum un-

ambiguous range and velocity, as well as angular, range and velocity resolution. Depend-

ing on the height of the ship, the field of view (FoV) of the radar varies and so does the 

number of radars needed to cover a whole ship. In Figure 1, the FoV of the radar ARS 408, 

is illustrated. As one can notice, if the radar is placed 20 m above the water, then the FoV 

of the sensor is approximately 80 m. If the radar is placed 30 m above the water (e.g., in a 

large cruise ship), then the FoV of the sensor is approximately 90 m. In particular, Table 1 

portrays some of the technical characteristics of the sensors whereas Figure 1 depicts the 

FoV of the radar. As one can notice, the radar total FoV consists of two FoVs, namely short 

range (SR) and far range (FR) which are a function of the distance from the radar. 

Table 1. Technical characteristics of the radar sensors (the azimuth angle is measured on a plane 

parallel to the building facade whereas the elevation angle is measured on a plane perpendicular 

to the building facade). 

Continental ARS 408-21 Long Range Radar Sensor 

Operating frequency 76–77 GHz 

Near field distance range 0.20–70/100 m  

Near field azimuth angle field of view (FoV) ±60° 

Near field elevation angle field of view (FoV) ±20° 

Far field distance range 0.20–250 m 

Far field azimuth angle field of view (FoV) ±9° 

Far field elevation angle field of view (FoV) ±14° 

Near field distance measuring accuracy ±0.10 m 

Far field distance measuring accuracy ±0.40 m 

Velocity range −400–200 km/h 

Velocity measuring accuracy 0.1 km/h 

 

Figure 1. Radar FoV. 

In our arrangement, R1 is placed 14 m above the ground facing downwards whereas 

R2 is placed in a position where its projection on the vertical axis of Sensor 1 is 4 m and 
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projection on the horizontal axis of Sensor 1 is 6 m. This can be seen in Figure 2 where the 

topology of the two sensors is depicted. During the experiments, a human-shaped doll 

was falling from a point 3 or 6 m below R1 and 3 m next to R2 as seen in Figure 2. It is 

stated that in a realistic scenario where the system would be installed in a ship the same 

topology would be used but instead of the ground, the sensors will be above the water 

level. Moreover, depending on the length and the height of the ship, the number of radars 

needed to cover a whole ship varies. In general, the greater the height of the ship is, the 

larger the FoV is and consequently, the number of the radars needed to cover a whole ship 

decreases. 

 

Figure 2. System architecture. 

Each radar sensor is being controlled via a controller area network (CAN) bus by a 

host, which in our case is a Raspberry Pi running a customized Linux distribution (Rasp-

berry Pi OS). Hosts are a matter of great importance as they make up the only communi-

cation channel with the radars and are the only ones that can parameterize them. 

Throughout the operation, each radar scans the area searching for objects passing in front 

of it. For each point located, information about its coordinates, velocity and radar cross-

section (RCS) is returned. This information, finally, is being processed at the host units 

where useful information about the points is deduced. 

Nonetheless, both the hosts are being programmed via the secure shell (SSH) proto-

col by a centralized super-host, with which are connected through a gigabit Ethernet net-

work switch. That is, communication from the super-host to sensors is feasible. Assisted 

by the hosts, which are receiving commands from the super-host and sending commands 

to sensors, one is able to reconfigure the sensor settings from the super-host. 

Each host can decide using the incoming information whether the moving object is 

human or something else. However, the final decision lies on the supremacy of the super-

host after examining the decisions of all sensors. It is noted that notwithstanding the su-

per-host consists a single point of failure (SPOF), some functionality could still be sup-

ported by the hosts. 

3. Preprocess Flow 

It is broadly known that any ML algorithm needs an explicit dataset as an input for 

it to operate properly. However, it is quite common that the raw information provided 

from sensors usually cannot be used for this purpose. The latter because sometimes the 

initial information is vague leading to errors during the training of the algorithm. Thus, 

manipulation of the raw data from the sensors in a more interpretable fashion is consid-

ered essential. 

In the next subsections an analysis of the preprocessing steps made is illustrated and 

the final dataset is depicted. The discussion starts with the data received from the sensors 

up to the feature generation and the training of the algorithm.  
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3.1. Initial Data Reception 

At any given time, each radar transmits information in respect to the points it ob-

serves after each measurement scan at a rate of a maximum 250 points every 70–80 ms, 

about the coordinates, the velocity and the radar cross section, abbreviated x, y, vel and 

rcs, respectively. This information, which contains columns with the time the data re-

ceived (timestamp) and the corresponding metrics, is then transferred through a CAN 

bus, with a rate of 500 Kbits/s, directly to the hosts and then stored locally. It should be 

referred that for any typical measurement scenario, lasting a few seconds, a different file 

for each radar sensor file is produced. 

The scope of this study is to examine whether a ML algorithm is able to detect a MOB 

incident using radar sensors. For that purpose, the falling object of interest was a human-

like shaped doll illustrated in Figure 3. Therefore, in order for the algorithm to be able to 

distinguish the human-like shaped doll against a variety of choices, a plethora of scenar-

ios, in which different objects were falling, took place too. However, it should be empha-

sized that a holistic approach was followed; during the dataset construction, any scenario 

regarding to any object except the doll were categorized as ‘Falling Object’. On the other 

hand, scenarios containing the doll were categorized as ‘MOB’ whereas the ones contain-

ing no fall as ‘Empty Field’. 

 

Figure 3. Human shaped doll. 

At this point, the way each radar captures the upcoming points and transmits infor-

mation about them needs to be clarified. The latter is deemed essential in order for the 

procedure later on to be fully understood, especially during the feature generation pro-

cess. Thus, according to the radar sensors manuals, each sensor scans the vicinity every 

about 70–80 ms generating a set of clusters, hereafter referred as snapshot, which contains 

data about the discovered points and meta-data relative to the snapshot. At the very end 

of each scan, the constructed snapshot is transmitted to the hosts where each one’s trained 

ML algorithm can decide in real time if it states ‘MOB’, ‘Falling Object’ or ‘Empty Field’. 

After having completed the measurements and storing the raw information, the sec-

ond crucial thing to be done was to partially synchronize in time each pair of the files 

corresponding to the different radars. That is, as a result of errors during transmission, 

different time sampling of the sensors, slight deviations of the sensor clocks and variance 

in latency of commands reception generated by the physical mean, as well as differences 

in command processing from the sensors, the joint information should be obtained. 

After accounting for all the aforementioned, it became evident that utter real time 

synchronization of the sensors is impossible. However, the partially synchronized files 

obtained from the procedure were useful in observing the same scenario from two differ-

ent perspectives, hence making the interpretation of the algorithms’ output easier during 

the training.  
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3.2. Data Cleaning 

The datasets fed to algorithms during the training period should state the infor-

mation in a clear and unambiguous way. Though, due to electronic sensor impairments 

or other various factors, the appearance of unexpectedly high deviating values within the 

dataset as well as zeros or NaNs was occasionally occurring. 

During the algorithm’s training phase there are several ways of determining the so-

called outliers degrading dataset integrity. Time series plots could be a useful tool to find 

the outliers with the only drawback being the careful observation of every different data 

column. PCA on the other hand was a powerful tool to determine the outliers as they 

appeared in all the score graphs, i.e., the points on the planes assembled from the pairs of 

all the orthogonal principal components. After having located the outliers, the procedure 

was straightforward; the error entries were replaced using adequate statistical tools such 

as linear interpolation or the method of moments. Unfortunately, this procedure cannot 

be done in real time because of the computational overhead it adds. 

3.3. Feature Generation 

The dataset construction procedure that will generate the dataset ML algorithms will 

make use of is the core of the system design. The more accurate and comprehensive the 

dataset is, the more accurate the results achieved from the algorithm will be. Conse-

quently, the selection of the features, also called predictors, making up the N-1 columns 

of the dataset should be done thoroughly and cautiously. 

Despite the fact that there is a plethora of different statistical metrics that could be 

applied to the raw data and that there are some nonstandardized directions in feature 

selection, the process of finding these is empirical. This is because no one can assure 

whether it is wise to use each and every feature; since, many, instead of increasing, tend 

to decrease the total accuracy of the algorithm. Let Φ∈{x, y, vel, rcs}, then the initial fea-

tures made up using statistical methods to each snapshot of each data type arrived from 

each sensor are illustrated in Table 2. 

Table 2. Features made up the dataset fed to ML algorithms. 

Features Derivation 

Mean(Φ) Mean value of all points’ Φ value in the snapshot 

Variance(Φ) Variance of all points’ Φ value in the snapshot 

Skewness(Φ) Skewness of all points’ Φ value in the snapshot 

Kurtosis(Φ) Kurtosis of all points’ Φ value in the snapshot 

Entropy(Φ) Entropy of all points’ Φ value in the snapshot 

RMS(Φ) Root mean square of all points’ Φ value in the snapshot 

Impulse factor(Φ) Impulse factor square of all points’ Φ value in the snapshot 

Median(Φ) Median of all points’ Φ value in the snapshot 

Mad(Φ) 
Median absolute deviation of all points’ Φ value in the snap-

shot 

Iqr(Φ) Interquartile range of all points’ Φ value in the snapshot 

Number of Points Number of points in the snapshot 

meanDistMovPoints Mean distance of all the points 

meanVelDiff Mean velocity difference between consecutive snapshots 

meanAccDiff Mean acceleration difference between consecutive snapshots 

4. ML Algorithms Comparison 

The training of the algorithm is sometimes considered a time-consuming and chal-

lenging procedure since multiple factors contribute to it. First and foremost, the final stage 

of the preprocess, i.e., the dataset construction, should have been done carefully. The more 

consistent, complete and comprehensible the dataset is, the more accurate the algorithm 
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will be in the classification of upcoming data. Thus, any mistake during the dataset gen-

eration step could mislead the algorithm’s decision. Nevertheless, despite the fact that the 

initial data acquisition that is needed for the algorithms’ training, the preprocess of the 

data for the training and the algorithms’ training itself are procedures that need time to 

get completed, once the algorithm has been trained, the presented system will be able to 

operate in fully real-time mode. The latter holds because the only process needed to be 

done in the real-time operation is to transform the upcoming data into features that will 

be imported to the trained algorithm, a procedure in the presented system fast enough 

not to add substantial computational overhead. 

Due to the different environmental placement of the two radar sensors, two different 

classifiers were trained, C1 and C2, each utilizing a different dataset constructed from R1 

and R2 incoming data, respectively. Therefore, two separate approaches will be discussed, 

each referring to the different radar sensor orientation. These datasets differ in size be-

cause of a deviation in interval time between snapshots reception as explained in Section 

3, hence leading to an unequal number of snapshots of each sensor for every measurement 

scenario. Moreover, each dataset was divided in three individual parts; the training set, 

the validation set and the test set with a ratio of 80/10/10, respectively. The training set 

was used to train the algorithm whereas the validation set was used as a feedback of al-

gorithm’s efficiency. Quite simply, validation set was implicitly known to the algorithm; 

by monitoring the efficiency of the algorithm onto the validation set, a parameterization 

of the algorithm was being conducted until an acceptable value was achieved. Finally, the 

test set which was fully unknown to the algorithm was used to control its generalization 

property. 

An analysis of the two datasets is described further on. Henceforth, the dataset con-

taining information acquired from R1 is named D1 and the dataset that acquired infor-

mation from R2 is named D2, respectively. Having said that, D1 matrix is of size AxB and 

D2 matrix is of size CxD, where the rows refer to examples and columns to predictors plus 

the response of each example. Additionally, B = D = 46, as only the most influential fea-

tures were selected, whereas A = 37,200 and C = 31,000. 

Since two sensors constitute the architecture, it was deemed necessary not only to 

examine both of their individual accuracies but also the accuracy achieved from the fusion 

of their data. In the next subsections an analysis and presentation of different ML algo-

rithmic approaches is investigated and presented. The algorithms the presented work 

made use of are the random forest, the support vector machines (SVM) and the naïve 

Bayes as shown below. 

4.1. Random Forest Classifier 

Unlike the well-known decision trees, random forest classifier comprises a large 

number of individual trees, that is, an ensemble [13-15]. Each tree is very sensitive to the 

data it is trained on, hence leading to a different tree structure when given slightly differ-

ent data each time. Random forest makes use of that property by allowing each tree to 

make use of a random subset of the predictors. Therefore, the predictions and conse-

quently the errors are mostly uncorrelated despite other occasions. Eventually, the upper-

most decision is obtained using the majority of the votes regarding to a specific class. 

The programming environment used for modeling was MATLAB and the parame-

terization of the algorithm is presented here. The learner aggregation method termed Bag 

is applicable for multiclass classification and provides the highest values of the corre-

sponding metrics (accuracy, WMF1 score). As individual decision trees are prone to over-

fitting, this method generates many deep trees where at each decision split, it selects a 

random subset of predictors. Then the results of them are combined and the generaliza-

tion error is estimated without additional cross validation. Additionally, the number of 

learning cycles was set to 200 whereas no hyperparameters were optimized. The remain-

ing options of the algorithm were set to their default values as specified in MATLAB. 
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Before the results presentation, a thorough analysis of the confusion matrix concept 

needs to be clarified. Thus, as for the rows and the columns of the matrix, these correspond 

to the true class and the predicted class, respectively. The correctly classified examples are 

depicted in the diagonal cells whereas the incorrectly classified ones elsewhere. In order 

for the reader to be able to examine the confusion matrix to the full extent, its main defi-

nitions are elaborated below assuming a random scenario S. Moreover, outside of the 

main matrix, the bottom line corresponds to the precision of each class whereas the right 

column to the recall defined as follows: 

Precision: The number of correctly predicted S scenarios out of all predicted S sce-

narios. The latter indicates that if the precision of a state is k%, then the k% of the scenarios 

the predictor classified as S are actually S scenarios. For instance, for the ‘Falling Object’ 

scenario, the correctly classified examples were 500 while the total predicted S scenarios 

were 500 + 2 = 502. Thus, the precision for the ‘Falling Object’ state is 500/502 = 99.6% as 

we can see in the middle bottom line. The total precision of the matrix is given by the 

metric Weighted Macro-Precision (WMP) which takes into consideration the weights of 

each class, i.e., the total examples of each class. More specifically, as an example, the WMP 

for the confusion matrix of C1 is calculated as the summation of the products of each di-

agonal cell with its corresponding precision divided by the total examples, that is (2927 × 

99.6 + 584 × 99.6 + 209 × 73.9)/3720 = 98.15%. 

Recall: The number of correctly predicted S scenarios out of the number of actual S 

scenarios. The latter indicates that if the recall of a state is k%, the classifier classified the 

k% of the S scenarios as S scenarios. For instance, for the ‘Falling Object’ scenario in C1, 

the correctly classified examples were 500 while the actual ‘Falling Object’ examples in 

the dataset were 11 + 500 + 73 = 583. Thus, the recall for the ‘Falling Object’ state is 500/583 

= 85.6% as we can see in the middle right. The total recall of the matrix is given by the 

metric Weighted Macro-Recall (WMR) which functions using the same logic as weighted 

WMP. Therefore, the WMR of C1′s confusion matrix, in similar fashion with WMP is cal-

culated as the summation of the products of each diagonal cell with its corresponding 

recall divided by the total examples, that is (2927 × 100 + 584 × 85.6 + 209 × 99)/3720 = 

97.68%. 

F1 score: A metric typically used to compare ML algorithms relative performance. It 

is defined as the harmonic mean of the precision and recall as 

F1 score = 2 × (precision × recall)/(precision + recall) (1)

For the reason that this definition is used mainly in binary classification problems, a 

different metric is being taken into consideration in multiclass classification problems, the 

Weighted Macro-F1 (WMF1) score. WMF1 score is calculated as the mean of the individ-

ual F1 scores with respect to the examples of each class. F1 scores for the states ‘Empty 

Field’, ‘Falling Object’ and ‘MOB’ in C1 can be easily shown to be 99.81%, 92.08% and 

84.66%, respectively. Consequently, the WMF1 score for the C1′s confusion matrix is 

95.62%. 

F1* score: F1* score is a metric that takes use of WMP and WMR but is more sensitive 

to error type distribution [16]. Thus, the evaluation of the algorithms’ efficiency will de-

pend on WMF1. However, for consistency reasons, F1* score is defined below. 

F1* score = 2 × (WMP × WMR)/(WMP + WMR) (2)

Accuracy: The ratio of the correctly classified scenarios among the total scenarios. 

Figure 4 presents the confusion matrix depicting the results of the C1 fed using D1′s 

test set. Examining the results, it is clear that C1 never confuses the states ‘MOB’ with 

‘clear field’ and vice versa. However, it is prone to confuse the fall of a human with the 

fall of an object. This could be interpreted as a logical outcome due to the similarity of the 

shape of some objects used during the measurements and the human body. On the other 
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hand, some objects used in the experiment were too small leading the algorithm to predict 

that there is nothing falling when in reality there was an object falling. 

The same interpretations can also be inferred by looking the results of the C2 on D2′s 

test set in Figure 5. The only thing to be mentioned for the C2 is that it is more susceptible 

to predict MOB when the state is ‘falling object’. The latter could be a result of R2′s posi-

tion; as opposed to R1, R2 was placed at a point where it was able to observe the falling 

objects the time when they had already achieved high velocity values, almost compared 

to the doll’s. 

Nevertheless, the fusion of the radars, i.e., the joint information, seems to be promis-

ing. In that case, at each time point the joint decision is based on the worst-case decision 

made by the two radars. For instance, if R1 announces ‘Empty Field’ and R2 announces 

‘MOB’, then the final decision will be ‘MOB’. Given this set-up, it seems that fusion can 

be more efficient in the ‘MOB’ state prediction, which is the most crucial one, by making 

the least faults. More precisely, the basis of fusion results in Table 3 which explains how 

fusion was implemented whereas Figure 6 portrays the confusion matrix of the fusion 

where 97.2% total accuracy achieved. However, while the fusion helped the algorithm to 

distinguish the states ‘Falling Object’ and ‘MOB’, it is still prone to confuse the states 

‘Empty Field’ and ‘Falling Object’. Two possible reasons are to blame; firstly, many objects 

were too small leading the individual classifiers to predict that nothing was falling where 

the opposite was happening and, secondly, during the operation of the radars miscellane-

ous objects of the environment were being observed whereas ideally nothing should be. 

Indicatively for R1, which is placed 14 m above the ground facing downwards, the pres-

ence of substantial existing points that were constantly being observed is well understood 

by examining Figure 7 which represents the total observed points in a typical ‘Empty 

Field’ measurement scenario. In particular, the radar is placed at the point (0, 0) whereas 

the y axis represents the height from the radar point to the ground and the x axis the left–

right direction, hence each point’s distance to the radar is ��� + ��. Moreover, further 

analysis revealed that their RCS values fluctuate between 0.1 and 0.9, information that 

also misleads the algorithm. Thus, mutual consideration of both the environmental exist-

ing points and the objects to be used during the training phase is highly encouraged in 

similar systems. 

To conclude, using the aforementioned formulation for MWF1, Table 4 depicts the 

MWF1 scores and accuracies achieved by the C1, C2 and their fusion. 

Table 3. Decisions taken from the fusion of the radar sensors. 

C1 C2 Joint Decision 

Empty Field Empty Field Empty Field 

Empty Field Falling Object Falling Object 

Empty Field MOB MOB 

Falling Object Empty Field Falling Object 

Falling Object Falling Object Falling Object 

Falling Object MOB MOB 

MOB Empty Field MOB 

MOB Falling Object MOB 

MOB MOB MOB 

Table 4. Most useful metrics of the classifiers and their fusion used for comparison among differ-

ent approaches. 

 C1 C2 Fusion 

F1 Empty Field 99.81% 98.92% 98.72% 

F1 Falling Object 92.08% 70.38% 88.29% 

F1 MOB 84.66% 69.06% 94.91% 
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WMF1 95.62% 89.71% 94.68% 

Accuracy 97.69% 94.10% 97.24% 

 

Figure 4. C1′s confusion matrix. 

 

Figure 5. C2′s confusion matrix. 
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Figure 6. Fusion’s confusion matrix. 

 

Figure 7. Total points observed from R1 in a typical ‘Empty Field’ measurement scenario. 

4.2. Support Vector Machines 

SVMs are considered a powerful tool in classification problems due to their ability of 

finding a hyperplane of N-1 dimensions to divide the N-dimensional data in classes [17-

19]. Therefore, a multiclass error-correcting output codes model containing SVM binary 

learners was used for training and predicting snapshots. The model was implemented in 

the MATLAB programming environment where the kernel of the learners was set to 

‘Gaussian’ while the remaining options were left at their default values. 

Examining Figure 8 depicting the confusion matrix of the sensors’ fusion, which is 

the optimal implementation, it is becoming clear that SVM algorithm tends to strongly 

confuse the states ‘MOB’ and ‘Falling Object’, thus making it insufficient for use. The latter 

is a logical outcome as neither C1 nor C2 are able to highly distinguish these two states. 

This can be seen with the aid of the confusion matrices of C1 and C2 presented in Figures 

9 and 10, respectively. One potential cause could be that the data is not linearly separable. 

Another reason could be that the dataset fed to the algorithm was imbalanced; the exam-

ples of ‘MOB’ state were being outnumbered by the examples of the other states. SVM is 

known to perform poorly in imbalanced sets. For comparison purposes, it is reported that 

the WMF1 score and accuracy of the fusion are 86.98% and 92.38%, respectively. The pro-

cess followed to find these values is the same as in the case of random forest and thus it is 

omitted. 
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Figure 8. Fusion’s confusion matrix. 

 

Figure 9. C1′s confusion matrix. 
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Figure 10. C2′s confusion matrix. 

4.3. Naïve Bayes Classification 

Another one strong classifier is the naïve Bayes which is probabilistic and selects the 

most suitable class for any example based on the maximum a posteriori decision rule 

[20,21]. However, to produce the best results the predictors have to be independent as this 

is the main assumption of the algorithm. The model was also implemented using the 

MATLAB programming environment whereas the options of the algorithm used left in 

their default values. 

Similar findings as in the case of SVM can be seen in Figures 11–13 where the confu-

sion matrices of C1, C2 as well as the sensors’ fusion are depicted. By examining the re-

sults, it is becoming clear that even though the fusion improves the predicting perfor-

mance, the tendency of the algorithm to confuse mostly the states ‘MOB’ and ‘Falling Ob-

ject’ is making it also insufficient for use. The main reason this happens could be due to 

the feature independency assumption of the algorithm. In our scenarios the initial raw 

data was not fully independent; for instance, there was a dependency between the value 

of the coordinate on the y axis and the velocity of the falling objects. Nonetheless, it is 

mentioned that the WMF1 score and accuracy of the fusion are 90.83% and 94.90%, re-

spectively. Finally, Table 5 depicts the aforementioned algorithm performances showing 

that the random forest classifier is the best option among the three. More research on dif-

ferent classifiers and techniques is encouraged in order for the results to be improved. 
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Figure 11. Fusion’s confusion matrix. 

 

Figure 12. C1′s confusion matrix. 
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Figure 13. C2′s confusion matrix. 

Table 5. Comparison of the algorithms’ WMF1 score and accuracy. 

Algorithm 

WMF1 

Score (Fu-

sion) 

Accuracy 

(Fusion) 
Comments 

Random 

forest 
94.68% 97.24% Sufficient for use 

SVM 86.98% 92.38% 
Insufficient for use due to its high tendency of 

confusion the states ‘MOB’ and ‘Falling Object’ 

Naïve 

Bayes 
90.83% 94.90% 

Insufficient for use due to its high tendency of 

confusion the states ‘MOB’ and ‘Falling Object’ 

5. Conclusions 

MOB incidents are of great interest as they are considered life-threatening situations 

where instant action needs to be taken. In the present work, an AI-aided system using 

radar sensors was implemented and proposed. Initially, the analysis of the system’s key 

characteristics is presented. Thereinafter, a thorough analysis of the AI preprocess flow 

was followed, and the work was concluded with the comparison of different AI algo-

rithms. Numeric results were presented and interpreted throughout the paper in order to 

reveal insights and the main advantages and drawbacks of the system. As the main chal-

lenge of AI-aided systems is the dataset construction, implementations using more exten-

sive and diverse datasets as well as different algorithmic approaches are left as future 

work. Moreover, extra measurement campaigns would allow the validation of the pre-

sented results under diverse water environments. Finally, the multiplicity and placement 

of the measurement equipment depends on the specific ship structure. 
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