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Abstract: Man overboard is an emergency in which fast and efficient detection of the critical event
is the key factor for the recovery of the victim. Its severity urges the utilization of intelligent video
surveillance systems that monitor the ship’s perimeter in real time and trigger the relative alarms that
initiate the rescue mission. In terms of deep learning analysis, since man overboard incidents occur
rarely, they present a severe class imbalance problem, and thus, supervised classification methods
are not suitable. To tackle this obstacle, we follow an alternative philosophy and present a novel
deep learning framework that formulates man overboard identification as an anomaly detection
task. The proposed system, in the absence of training data, utilizes a multi-property spatiotemporal
convolutional autoencoder that is trained only on the normal situation. We explore the use of RGB
video sequences to extract specific properties of the scene, such as gradient and saliency, and utilize
the autoencoders to detect anomalies. To the best of our knowledge, this is the first time that man
overboard detection is made in a fully unsupervised manner while jointly learning the spatiotemporal
features from RGB video streams. The algorithm achieved 97.30% accuracy and a 96.01% F1-score,
surpassing the other state-of-the-art approaches significantly.

Keywords: man overboard; deep learning; computer vision; unsupervised learning; convolutional
autoencoder; spatiotemporal data

1. Introduction

A man overboard is an emergency incident where a passenger or a member of the
ship’s crew has fallen off the ship into the sea and requires immediate rescue. It is under-
lined that, every year, about 22 people on average fall off a cruise ship, and 79% of them
do not survive or are considered missing [1]. The principal cause for such a small survival
rate is the fact that, when a person remains for one hour in water at 4.4 ◦C, their body
temperature drops to 30 ◦C [2]. Thereby, man overboard is a serious and critical event
that requires immediate handling, since the overboard casualty is exposed to numerous
safety hazards, such as drowning, injuries, hypothermia, and rough sea. This entails that
time is a crucial factor and plays an important role in the effective recovery of the victim,
and therefore, the lack of timely and critical information regarding the man overboard
occurrence (e.g., exact time and location of the event) can lead to unpleasant and serious
consequences [3].

Conventional maritime surveillance systems contain optical grayscale or RGB sensors
that are programmed to monitor various predetermined locations of the safety perimeter [4].
It should be noted, however, that such traditional surveillance methods require an operator
who has to monitor simultaneously several real-time video sequences. This can undeniably
lead to an increased chance of error and, thus, inadequate response to the critical event.
Therefore, for the effective evaluation and localization of the critical event, a continuous
real-time monitoring approach should be adopted.
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Recent developments in signal processing and deep learning applications of imagery
from various optical sensors have received much attention from the scientific community,
as well as brought about significant progress and remarkable breakthroughs in the field of
intelligent video surveillance [5,6]. This fact has led algorithms to be a powerful tool in var-
ious monitoring systems that are based on semantic information extraction (e.g., anomaly
detection [7], motion tracking [8], pose estimation [9,10], and human detection [11,12]).
Moreover, the recent abundance of large datasets and high-quality RGB cameras, as well as
tremendous developments in computer power and cloud computing, have led deep neural
networks to play a crucial role in intelligent surveillance systems [3,13–16].

The present paper outlines a deep learning approach of effectively recognizing man
overboard falls in video sequences captured from multiple RGB cameras that are installed
at the ship’s perimeter. It is underlined that, due to the lack of man overboard data and,
at the same time, the abundance of datasets that are related to the normal situation and
activities, we address the fall identification task as an anomaly detection problem. Thereby,
the aim of our research is to broaden the current knowledge of unsupervised learning and
anomaly detection and train a multi-property spatiotemporal convolutional autoencoder
framework based on the normal conditions, as well as utilize their reconstruction error to
recognize man overboard as an abnormal event, during the validation procedure.

It is noted that fully connected, as well as deep autoencoders, ignore 2D image struc-
tures, a fact that introduces redundancy in the parameters, forcing each feature to be global
and thereby span the entire visual field [17]. On the contrary, convolutional autoencoders
outperform the aforementioned conventional techniques in various computer vision tasks,
since they are able to discover localized features that repeat themselves all over the in-
put [17]. In parallel, since a video sequence incorporates information in both time and
space, a spatiotemporal convolutional autoencoder is more suitable for the man overboard
recognition problem. This is mainly due to the fact that it is able to learn a representation
of the local spatiotemporal patterns of frames in a video stream [18,19].

Nevertheless, modern automated approaches, as described in the previous paragraphs,
present a series of crucial drawbacks. Firstly, supervised learning approaches fail to gener-
alize; thus, their performances tend to be reduced significantly when the general setting of
the application (e.g., the background of the falling event) changes. Moreover, a supervised
approach requires large, annotated datasets; hence, there are performance bottlenecks
related to the number of annotated samples, the captured scenarios, etc. Regarding the
unsupervised techniques, the approaches that present the best performance utilize action
recognition preprocessing steps in order to process the action and provide the analysis.
This results in the need for multiple forward propagations in learning structures. It is
underlined that, while such approaches are essential in a setting with numerous humans
present who are moving in multiple trajectories, they do not capture the particularities of
the studied application scenario (i.e., man overboard identification).

To this end, in this study, we present a novel man overboard detection framework that
includes: (i) formulating the identification of the critical event as an anomaly detection
task; (ii) designing a set of spatiotemporal convolutional autoencoders over multiple image
properties (i.e., appearance, gradient, and saliency) of the RGB data; and (iii) training the au-
toencoders on the normal situation and utilizing their reconstruction error to detect unseen
man overboard events during testing. It is highlighted that the proposed method manages
to identify falls by using only one forward propagation on our learning architecture. This
paper is an extension of our previous study [15], and to the best of our knowledge, this is
the first time a deep spatiotemporal convolutional autoencoder has been utilized for the
man overboard identification problem from RGB video sequences.

The remainder of this paper is organized as follows. Section 2 briefly presents human
detection frameworks integrated into intelligent video surveillance systems. Section 3
describes the overall architecture of the proposed methodology. Section 4 analyzes the
experimental results obtained. Section 5 briefly discusses various aspects and potential
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improvements of the proposed deep learning framework. Lastly, in Section 6, the conclusion
is summarized, and suggestions for future research are introduced.

2. Related Work

Recently, with the advancement of deep neural networks, intelligent video surveillance
systems have gained significantly increased interest in the computer vision community [11].
The key feature of a universal maritime surveillance application is human recognition,
and thus, it must be completely independent of the environment, as well as weather and
light conditions [3]. Several methods for detecting humans through optical imaging have
been presented in the literature. More specifically, many of them utilize features extracted
from the histograms of oriented gradients [20], in conjunction with various classification
techniques (e.g., support vector machines [21], AdaBoost [22], and k-means [23]). In parallel,
several studies have proposed various techniques for the human detection problem that
exploit the probabilistic assembly of robust part detectors [24], depth information [25],
classification on Riemannian manifolds [26], and flexible mixture of parts [27].

More recent evidence on this topic highlights that the rapid development of deep learn-
ing models has brought significant progress into the field of intelligent video surveillance
from RGB data [28,29]. It is underlined that multiple studies have outlined the significance
of real-time home surveillance applications [30,31], which focus on fall detection through
RGB optical sensors, computer vision, and deep learning frameworks [32–34]. Table 1
provides a tabulated summary of deep learning techniques that utilize RGB data developed
for a more general fall detection scenario. Nevertheless, little work has been presented in
the literature on maritime surveillance systems and, in particular, on the man overboard
incident [3].

Table 1. Summary of the state-of-the-art machine learning techniques employed for human fall detection.

Authors Utilized Deep Learning Technique Utilized RGB Dataset

Abobakr et al. [35] CNN, RNN, LSTM with ResNet,
Recurrent LSTM, and Logistic regression URFD dataset

Adhikari et al. [36] CNN Own dataset

Cameiro et al. [37] CNN URFD and FDD dataset

Espinosa et al. [38] CNN UP-Fall and Multicam dataset

Ge et al. [39] RCN, RNN, and LSTM ACT42 dataset

Hsieh and Jeng [40] FOF CNN and 3D-CNN KTH dataset

Hwang et al. [41] 3D-CNN TST Fall detection dataset

Kasturi et al. [42] 3D-CNN URFD dataset

Li et al. [43] CNN URFD dataset

Li et al. [44] 3D-CNN Own dataset

Lie et al. [45] CNN, RNN, LSTM, and DeeperCut Own dataset

Lin et al. [46] RNN and LSTM Own dataset

Lu et al. [47] CNN URFD, FDD, and Multicam dataset

Lu et al. [48] 3D-CNN and LSTM Sports-1M and Multicam dataset

Rahnemoonfar and Alkittawi [49] 3D-CNN SDUFall dataset

Shen et al. [50] DeepCut Own dataset

Tao and Yun [51] RNN and LSTM Rougier and Meunier dataset [52]

Tsai and Hsu [53] CNN (MyNet1D-D) NTU RGB+D dataset

Zhou and Komuro [54] Variational Auto-encoder HQFD and Le2i dataset

Zhou et al. [55] CNNs based on AlexNet and SSD-Net Own dataset
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As already mentioned, the man overboard event can be addressed as a computer vision
problem of detecting abnormal behavior. In particular, the normal situation comprises the
typical capture of the ship’s surroundings, while the anomaly could be the capture of a
human fall. Various unsupervised learning techniques have been proposed for abnormal
event detection. The work of [56] introduced a framework for anomaly detection that is
independent of the temporal ordering of anomalies and unsupervised, thus requiring no
separate training sequences. Other studies exploit the online detection of abnormal events
using incremental coding length [57] and unmasking, a technique previously used for
authorship verification in text documents [58]. In parallel, the works of [59,60] employed
tracking algorithms in order to extract salient motion information that is subsequently
classified as normal or abnormal. It was underlined, however, that in complex visual
environments (e.g., scenes where numerous humans are present), the tracking procedure
tends to fail.

Furthermore, an increasing number of studies have utilized deep convolutional au-
toencoders to detect anomalies on videos [61,62]. Other works utilize convolutional au-
toencoders in combination with a one-class support vector machine for video anomaly
detection [63,64]. The authors of [65] leverage the conventional handcrafted spatiotemporal
local features and learn a fully connected autoencoder on them and then build a fully
convolutional feed-forward autoencoder to learn both the local features and the classifiers
as an end-to-end learning framework. The work of [66] proposes a technique to generate
unbiased features by unsupervised learning for detecting irregularities in high-dimensional
data feed (e.g., surveillance system for industrial robots). In [67], the authors introduced
a novel double-fusion framework, exploiting the complementary information of both
appearance and motion patterns, to detect anomalies in video sequences.

Several studies have been carried out demonstrating spatiotemporal autoencoders,
which utilize 3D convolutions to extract spatiotemporal features from video sequences,
in order to find anomalies in various types of data (e.g., RGB [68], thermal [16], and
hyperspectral [69]). The authors of [70] proposed a two-stage cascade of classifiers for
anomaly detection and localization in video data, where spatiotemporal patches are fed into
a 3D autoencoder for the initial identification of regions of interest and then evaluated in the
second stage by a more complex and deeper 3D convolutional neural network. In parallel,
the work of [71] proposed a hybrid framework, based on the Long Short-Term Memory
(LSTM) encoder–decoder and the convolutional autoencoder, which not only extracts better
spatiotemporal context but also improves the extrapolate capability of the corresponding
decoder with the shortcut connection. Lastly, deep generative models have been proposed
in several works for detecting abnormal events in various complex environments [65,71,72].

Our Contribution

Inspired by the above research work, in the present study, an unsupervised fall detec-
tion technique for identifying man overboard events is utilized. The proposed framework
(see Figure 1) is based on a spatiotemporal convolutional autoencoder, which is trained
on RGB video sequences that simulate man overboard scenarios. Our network is trained
on the normal situation in order to learn efficient data encodings by ignoring signal noise
and then uses its reconstruction error to detect man overboard as an abnormal event dur-
ing the test process. In parallel, we utilize multiple image properties (i.e., appearance,
gradient, and saliency) of the RGB data to enhance the identification capabilities of the
proposed architecture. To the best of our knowledge, man overboard identification has
not been addressed as an anomaly detection task utilizing unsupervised deep learning
techniques. Lastly, in this study, we present a dataset containing RGB videos with test
throws of a human-sized dummy that was created to train and validate the performance of
the proposed framework.
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Figure 1. The overall system architecture, which utilizes a set of spatiotemporal convolutional
autoencoders over multiple image properties of the RGB video sequences.

3. System Architecture
Learning Architecture

The presented system utilizes only RGB video streams to identify overboard falls.
However, the simple use of raw RGB frames is not sufficient for the efficient detection of
the man overboard event. To extract additional data from the visual modality, we further
analyzed the camera streams to extract specific visual properties, i.e., representative vectors.
To this end, the visual modality is analyzed to extract the actual frame (appearance), the
gradient of the frame using a short memory window of 10 frames (movement vector),
and the objectness of the current frame (saliency vector). Thus, the Appearance Property
consists of the actual frame capturing. Subsequently, the Gradient Property captures
the movement of the objects by taking as the input the gradient of the frame. Finally, the
Saliency Property reflects how likely a window of the frame covers an object of any category.
This property creates a saliency map with the same size as the frame that covers all objects
of an image in a category-independent manner.

Each image property was fed into an individual spatiotemporal autoencoder. Au-
toencoders are a type of neural network that manages to learn efficient data encodings
by training the network to ignore signal noise. Their usefulness comes from the fact that
they are trained in an unsupervised manner. They are essentially composed of two main
components that are trained in parallel. The dimensionality reduction component aims at
extracting an efficient encoding of the input signal, while the reconstruction side tries to
generate from the reduced encoding a representation as close as possible to the original
input. To identify the abnormalities, the reconstruction error of each autoencoder was
monitored, and when the error was bigger than the predefined threshold, an alert was
raised. The selection of the threshold took place during the training to identify the exact
value that maximized the detection performance. The autoencoders used for each image
property had the structure presented in Figure 2. For the appearance vector, the RGB frames
were converted and resized to grayscale images with a resolution of 227 × 227 × 1. Lastly,
it is noted that, for the analysis, minibatches of size 10 were utilized.
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4. Experimental Evaluation
4.1. Dataset Description

To train and evaluate the proposed methodology, a mock man overboard event was
conducted that concerned the fall of a human-sized dummy from the balcony of a high-rise
building. In particular, the human dummy (see Figure 3), weighting 30 kg, was thrown from
an approximate height of 20 m, which is roughly equivalent to two seconds of free-falling.
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Figure 3. The human-sized dummy that was used during the test throws.

As depicted in Figure 4a–d, for the purposes of the specific experiment, we performed
and recorded 320 test throws of the human dummy to simulate the falls and, in particular,
the man overboard event (i.e., positive events). Furthermore, as presented in Figure 4e,f,
we recorded numerous videos without dropping the human dummy, as well as several
throws of various plastic objects, such as bottles and bags (i.e., negative events). In this
way, we were able to train a deep learning network that was generalized and not prone to
false-positive alerts caused by events that were not human-related.

More specifically, the experiments lasted five days and took place in the surrounding
area of the Nikaia Olympic Weightlifting Hall. Since the test throws of the objects were
carried out from 9:00 a.m. to 5:00 p.m. and, therefore, throughout the entire day, the
acquired data varied in terms of color spaces and illumination conditions (e.g., overexpo-
sure and underexposure). In parallel, it is noted that the videos were shot under different
weather conditions (e.g., cold, hot, sunny, windy, cloudy, and rainy), hence producing
further variations in the general background of the falling event.
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The freefall (a–d) of the human dummy from different shooting angles (positive events) and various
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Thereby, in this work, as depicted in Figure 4, we utilized a dataset that contains
RGB videos featuring the (i) freefall of the human-sized dummy, (ii) normal situation,
and (iii) throws of other various objects. For the data collection procedure, a GoPro Hero
7 Silver (see Figure 5) was used. It is emphasized that the acquired data are video sequences
with an aspect ratio of 9:16 and, in particular, with a pixel resolution of 1080 × 1920.
Moreover, the RGB sensor was set to shoot at a high frame rate and, more specifically,
at 50 frames per second in order to ensure sufficient data acquisition regarding both
the positive and negative events. The dataset of this paper is available online at: https:
//github.com/ikatsamenis/Fall-Detection/ (accessed date 14 January 2022).
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Figure 5. The RGB optical sensor (a,b), which was used during the data acquisition experiments to
monitor the test throws of the human dummy, mounted on the perimeter of the building.

It is noted that, in order to avoid training bias, as well as to guarantee the replicability
and generalization of the proposed network to other datasets, the RGB camera was placed
at four different locations of the building (see Figure 4a–d). In such a way, we were able
to obtain videos that varied in terms of illumination, background, distance, and shooting
angle. More specifically, as illustrated in Figure 6, the sensor was placed (i) to the left
of the freefall trajectory at a short distance of 7 m (see Figure 4a), (ii) to the right of the
freefall trajectory at a short distance of 5 m (see Figure 4b), (iii) to the top left of the
freefall trajectory at a roughly 45◦ angle (see Figure 4c), and (iv) to the left of the freefall

https://github.com/ikatsamenis/Fall-Detection/
https://github.com/ikatsamenis/Fall-Detection/
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trajectory at a long distance of 13 m (see Figure 4d). Lastly, it is underlined that, to further
generalize the learning process, we augmented the training data by horizontally flipping
the corresponding videos.
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camera was placed throughout the data acquisition process regarding the freefall (yellow) of the
human dummy (as presented in [15]).

4.2. Experimental Setup—Model’s Training

The proposed method was implemented in the interactive environment called “Google
Colaboratory”, which allows the user to write Python codes through a browser. In this
environment, important libraries are already installed, such as TensorFlow and Keras. This
specific implementation used Python 3.7.12, Keras (1.08) and TensorFlow (2.1.0) machine
learning libraries in combination with various scientific and data management libraries.
The deep models were trained using a Tesla K80 GPU.

In order to train the model, a preprocessing stage was necessary. Preprocessing began
with the separation of the RGB video data into the train and test sets. No falling action data
were used for the train set, while falling action data were used for the test set. Subsequently,
frames were exported from the video data. These frames were resized and turned into
grayscale to train the proposed autoencoder model. Then, the training process was initiated
by only using the data that had no falling action. Thus, these data depicted only the normal
situation. On the other hand, the test data, which were used for the predictions after the
training process, featured non-falling as well as falling events.
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In order to study the most useful camera placement, two models were trained; the
first model was designed for the horizontal view and the second one for the 45◦ angle view
of the camera. For comparison purposes, a supervised learning method was adopted that
consisted of a deep CNN classifier. In this method, the same data as in the unsupervised
learning method were used, but the falling and no falling data were combined with the
training process. More specifically, 60% of the entire dataset was used for the train set, 30%
for the test set, and 10% for the validation set. In this method, the same preprocessing con-
cept was followed, and the focus was on the best camera placement, as in the unsupervised
learning method.

4.3. Experimental Results

The performance of the comparative networks was evaluated in the test set of the
dataset described in Section 4.1. Initially, we started with a simple autoencoder over
only the appearance property, tested its performance from different camera angles, and
subsequently compared it with a simple CNN classifier. For this purpose, the autoencoder
was trained on videos representing the normal condition, i.e., video sequences with zero
numbers of falls in them. On the contrary, the CNN classifier was trained by utilizing
RGB video frames that depict both positive (i.e., falls) and negative (i.e., normal situation)
events. The performance evaluation of the deep learning networks took place by utilizing
video frames that include the falls of the human-sized dummy, as well as an equal number
of frames that depict only the normal condition. Lastly, the single autoencoder over the
appearance property was expanded in such a way that it utilizes multiple image properties
(i.e., appearance, gradient, and saliency) in order to enhance the detection capabilities of
the proposed architecture.

It is underlined that, to guarantee adequate spatiotemporal information processing,
the aforementioned algorithms were set to perform a detection every 10 frames (5 Hz).
To this end, Figure 7 illustrates the freefall of the human dummy during a test throw
as recorded by the RGB sensor and, in particular, the frames in which the deep models
performed the fall identification task.
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4.3.1. Performance of the Single Autoencoder with Data from Different Camera Angles

To evaluate the performance of the single autoencoder over the appearance property
for RGB data that was derived from different camera angles, the Area Under the Curve
(AUC) metric was employed. In particular, the AUC score is calculated in relation to
the ground truth annotations at the frame level and is a common performance metric
for various abnormal identification methods. In this work, it was used to measure the
ability of the learning algorithm to correctly distinguish falling from no falling events and
summarize the Receiver Operating Characteristics (ROC) curve of the system. The ROC
curve represents the probability curve that depicts the raising of a true alert, as well as a
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false alarm, and demonstrates the diagnostic ability of a deep model as its discrimination
threshold is modified.

As observed in Figure 8a, the single autoencoder over the appearance property
achieved an AUC score of 100% when fed with horizontal view data (see Figure 4a,b,d).
On the contrary, as can be seen in Figure 8b, the algorithm demonstrated an AUC score of
59% when utilizing 45◦ angle view data (see Figure 4c). It is highlighted that an AUC of
100% denotes a perfect classifier, whereas an AUC of 50% corresponds to a network that
produces random identification outputs. Therefore, the horizontal view model showed an
excellent measure of separability. On the other hand, the 45◦ angle view model showed no
class separation capacity whatsoever, since its AUC score was relatively close to 50%. Con-
sequently, the AUC score proved that the horizontal view was the most suitable placement
for the camera.
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The vast difference between the two models, in terms of their AUC scores, is mainly
due to the fact that, when utilizing horizontal view RGB data, the network can more
effectively learn representations from the different stages of the falling event. In particular,
the vertical displacement of the object during its fall is observed in a more efficient way by
placing the camera without inclination in relation to the object’s trajectory (see Figure 7).
On the contrary, in two consecutive frames that derive from the 45◦ angle view data, the
vertical displacement of the object tends to be negligible. In other words, through the entire
video sequence, the position of the object is almost static, and, therefore, the network fails
to detect anomalies in the spatiotemporal information stream. In conclusion, the trajectory
of the freefall is more efficiently depicted and analyzed by utilizing the horizontal (see
Figure 4a,b,d) than the 45◦ angle (see Figure 4c) view of the RGB camera. Figure 8 confirms
the superiority of the horizontal view model, which was eventually embedded in the
proposed multi-property spatiotemporal autoencoder.

4.3.2. Performance of the Comparative Deep Learning Techniques

In parallel, the implemented comparative deep learning networks were evaluated in
terms of four performance metrics, namely:

• Accuracy (Acc), which is the simplest of the four metrics and denotes the percentage
of the correctly identified man overboard events in relation to the total amount of
video sequences.
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• Precision (Prec), which is the percentage of the correct positive detections to the total
positive detections that a deep model considers. It is highlighted that a low precision
score entails a high number of false alarms.

• Recall (Rec), which is the ratio of the correct positive detections to the total positive
events in the ground truth data. It is emphasized that a low recall score implies that
the model has a high number of misses.

• F1-score (F1), which is the harmonic mean of precision (Prec) and recall (Rec).

For a given set of RGB video frames, the aforementioned evaluation metrics are
calculated as follows:

Acc =
TP + TN

TP + TN + FP + FN
, (1)

Prec =
TP

TP + FP
, (2)

Rec =
TP

TP + FN
, (3)

F1 =
2·TP

2·TP + FP + FN
, (4)

where TP, TN, FP, and FN denote, respectively, the true-positive, true-negative, false-
positive, and false-negative fall detections. In this paper, the aforementioned performance
metrics were computed (in %) across all video sequences of the test set for each of the
comparative deep learning techniques and can be seen in Figure 9.
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Figure 9. Comparative analysis of the unsupervised single autoencoder vs. the supervised classifier
approach for the different capturing positions of the RGB camera.

Regarding the performance of the single autoencoder, which utilizes data that derive
from the 45◦ angle view camera, the low percentage of the metrics lies in the fact that the
labeling rate is low due to the negligible vertical displacement of the human dummy in
two consecutive video frames during its freefall. Thus, the unsupervised model fails to
effectively identify anomalies in the spatiotemporal information stream, a fact that also
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confirms its low AUC score that was presented in Section 4.3.1 and illustrated in Figure 8b.
In parallel, it is clear, considering the low percentage of the metrics, that a supervised
learning method, either by utilizing horizontal or 45◦ angle view data, is flawed and,
thereby, inadequate for the purpose of this paper (see Figure 9).

On the other hand, among the comparative models, the horizontal view autoencoder
demonstrated the best performance, achieving 61.35% accuracy and 68.76% F1-score. Ad-
ditionally, the fact that its precision is significantly higher than that of the other three
approaches shows that there is a negligible quantity of FP values. It is noted that precision
indicates how good a deep model is when its outcome is positive. This entails that, by
utilizing the horizontal view model over the appearance property, we had the minimum
amount of false alarms. Furthermore, the proposed autoencoder presented the best pre-
dictive performance in terms of the recall metric. It is emphasized that recall shows how
many of the positive classes the model is able to correctly predict. This implies that the
horizontal view model over the appearance property showed the lowest number of misses
of the critical event.

In a nutshell, concerning the placement of the camera, the horizontal view has proved
to be the most suitable for the effective observation of the man overboard event, and in
terms of the deep learning approach, the unsupervised autoencoder demonstrated the best
identification capabilities. It is, however, highlighted that Figure 9 shows low detection
rates for both supervised and unsupervised approaches. On the one hand, video queues
have consecutive RGB frames, and therefore, even if the detection fails for one current
frame, it is highly likely that it will succeed in the next ones. On the other hand, man
overboard is a critical incident in which rapid and effective recognition plays an important
role in the recovery of the victim. Thereby, we expand the horizontal view unsupervised
model that showed the best results among the comparative models to improve its detection
capabilities. More details on this will be given in the next subsection.

4.3.3. Performance of the Proposed Multi-Property Spatiotemporal Autoencoder

From the analysis above, it is observed that an autoencoder model analyzing streams
from the horizontal view angle provides the optimal results, in terms of all four evaluation
metrics (i.e., accuracy, precision, recall, and F1-score). These, however, still fail to achieve a
performance that can be considered sufficient for using it in real-world scenarios. To this
end, we mobilized an additional set of autoencoders over the several image properties, as
seen in Figure 1. Based on the same annotation that was used for the comparative analysis
of the autoencoder and the classifier, which was presented in Section 4.3.2 and depicted
in Figure 9, we can assess the performance of the multiple autoencoder method. The
performance scores achieved by the proposed multi-property spatiotemporal autoencoder
on the test set of the dataset described in Section 4.1 can be seen in Figure 10.
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More specifically, the multi-property spatiotemporal autoencoder outperformed the
single autoencoder that showed the best detection capabilities over the appearance property
among the comparative deep models (see Section 4.3.2) in terms of all four performance
metrics. It is noted that the single network over the appearance property presented an error
rate of 38.65% and 31.24% in terms of the accuracy and F1-score, respectively (see Figure 9).
On the other hand, the proposed model demonstrated, respectively, an error rate of 2.70%
and 3.99% (see Figure 10).

To quantify this improvement in a more reliable way, we reported the relative change
in the error rate in terms of accuracy and F1-score obtained by our proposed multi-property
(i.e., appearance, gradient, and saliency) framework in relation to the error rate of the single
autoencoder over only the appearance property. To this end, let us denote the relative error
rate change (εRC) of a given evaluation metric as:

εRC =

∣∣∣∣ εmp − εsp

εsp

∣∣∣∣·100%, (5)

where εsp is the error rate of the single autoencoder over the appearance property in terms
of a given evaluation metric, and similarly, εmp is the error rate in terms of the same metric
obtained by our proposed methodology after expanding the analysis that the autoencoder
performs to multi-property (i.e., appearance, gradient, and saliency).

In particular, in terms of the accuracy metric, the multi-property spatiotemporal
algorithm demonstrates an error rate improvement (see Equation (5)) of 93.01% against
the traditional autoencoder over the appearance property. Similarly, the proposed network
outperformed the conventional autoencoder in terms of the F1-score, yielding an error rate
reduction (see Equation (5)) of 87.23%. In conclusion, through the proposed expansion of
the spatiotemporal autoencoder, in such a way that it utilizes multiple image properties (i.e.,
appearance, gradient, and saliency) of the RGB video queues, the error rate was roughly
reduced to 1/10 of its original value.

5. Discussion

As presented in the previous section, one can observe in the obtained evaluation scores
of the proposed multi-autoencoder approach that, by analyzing several properties of the
RGB data, the network’s performance can be significantly increased. This is mainly due to
the fact that the proposed framework analyzes data modalities that capture complementary
information. To this end, the multi-property spatiotemporal autoencoder separately pro-
cesses movement (gradient property) and image objectness (saliency property) in parallel
with the raw visual cues (appearance property). It is noted that this is also achieved by
the extraction of simple properties from the image frame and by doing only one forward
propagation in the autoencoder for each image property.

Nevertheless, while this approach is efficient and can be deployed in low-power CPUs,
which entails that the proposed framework can be integrated into real-time surveillance
systems, it is not appropriate for usage in more complicated datasets involving large
numbers of humans and/or actions. This is mainly due to the fact that each image property
is analyzed separately. However, such datasets are outside of the scope of the studied
scenario. For the man overboard event, the issue of false positives has mainly to do with
the presence of nonhuman-caused movements (e.g., birds flying in the field of view of the
camera), which has been considered in the creation of the dataset and is addressed by the
utilization of the movement/gradient image property.

To this end, in the future, in order to address the aforementioned complicated scenarios,
an analysis of fusing the features of all three aforementioned modalities will need to be
studied. It is underlined, however, that this would require the presence of specialized
learning methods that deal with data with extremely large dimensions. This happens
because the fused vector of features composed by all three modalities will contain a large
number of dimensions. Consequently, tensor-based learning techniques should be utilized
to solve the specific curse of dimensionality.
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6. Conclusions and Future Work

Identifying a man overboard event is a challenging task, since it is an incident that
occurs rarely and, hence, presents a severe class imbalance problem. In this study, man
overboard detection was formulated as an anomaly detection problem. We presented and
evaluated an unsupervised learning algorithm for the automated recognition of such critical
events, which is based on a spatiotemporal convolutional autoencoder. The employed
technique models the normal conditions of the perimeter of the ship by learning the spatial
and temporal features from the input video frames during the training stage and then
identifies falls as abnormal behavior.

More specifically, the proposed framework uses multi-property (i.e., appearance, gra-
dient, and saliency) analysis of RGB video streams in order to extract salient features and
encodings of the normal scene utilizing a set of spatiotemporal convolutional autoencoders.
Subsequently, the system can recognize a man overboard situation depending on whether
the autoencoder is able or not to reconstruct a scene due to the potential existence of an ab-
normal event. Furthermore, to train and evaluate the performance of the proposed method,
a dataset containing RGB video sequences with test throws of a human-sized dummy
from the balcony of a high-rise building was demonstrated. The proposed multi-property
spatiotemporal autoencoder achieved state-of-the-art results and, in particular, 97.30%
accuracy and 96.01% F1-score on the test set of the presented dataset, surpassing other
state-of-the-art approaches, such as a single autoencoder, over the appearance property
and a conventional CNN classier. This entails a relative change in the error rate of 93.01%
and 87.23% in terms of the accuracy and the F1-score, respectively. Therefore, through
the proposed expansion of the autoencoder in such a way that it utilizes multiple image
properties, the obtained error rate was roughly decreased to 1/10 of its original value.

Future work will concentrate on maximizing the performance of our anomaly detection
scheme by utilizing additional information modalities, such as thermal imaging data
and radar signals, as well as multimodal information fusion techniques for the efficient
automated recognition of the man overboard event [73]. Recent studies have underlined
that the use of thermal sensors is a crucial factor in various computer vision surveillance
systems, since humans are warm-blooded organisms, a property that distinguishes them
from their environment in thermal imagery [74]. In parallel, by leveraging radar signals
the intelligent system will be able to dynamically track and monitor in real time the
critical event more efficiently, thus aiding in the quick recovery of the victim [75–77].
Therefore, by fusing multi-sensor data (i.e., optical and thermal video streams, as well
as radar signals), the overall performance of the automated fall detection system can be
significantly improved [55]. Lastly, we will focus on additional ways for intra- and inter-
property encoding of the various modalities in order to further improve the identification
capabilities of the proposed maritime surveillance system.
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